11 research outputs found

    Krox20 Regulates Endothelial Nitric Oxide Signaling in Aortic Valve Development and Disease

    No full text
    International audienceAmong the aortic valve diseases, the bicuspid aortic valve (BAV) occurs when the aortic valve has two leaflets (cusps), rather than three, and represents the most common form of congenital cardiac malformation, affecting 1-2% of the population. Despite recent advances, the etiology of BAV is poorly understood. We have recently shown that Krox20 is expressed in endothelial and cardiac neural crest derivatives that normally contribute to aortic valve development and that lack of Krox20 in these cells leads to aortic valve defects including partially penetrant BAV formation. Dysregulated expression of endothelial nitric oxide synthase (Nos3) is associated with BAV. To investigate the relationship between Krox20 and Nos3 during aortic valve development, we performed inter-genetic cross. While single heterozygous mice had normal valve formation, the compound Krox20+/−;Nos3+/− mice had BAV malformations displaying an in vivo genetic interaction between these genes for normal valve morphogenesis. Moreover, in vivo and in vitro experiments demonstrate that Krox20 directly binds to Nos3 proximal promoter to activate its expression. Our data suggests that Krox20 is a regulator of nitric oxide in endothelial-derived cells in the development of the aortic valve and concludes on the interaction of Krox20 and Nos3 in BAV formation

    Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations

    Get PDF
    International audienceMembers of the large family of Hox transcription factors are encoded by genes whose tightly regulated expression in development and in space within different embryonic tissues confer positional identity from the neck to the tips of the limbs. Many structures of the face, head, and heart10 develop from cell populations expressing few or no Hox genes. Hoxb1 is the member of its chromosomal cluster expressed in the most rostral domain during vertebrate development, but never by the multipotent neural crest cell population anterior to the cerebellum. We have developed a novel floxed transgenic mouse line, CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinase conditionally induces robust Hoxb1 and eGFP overexpression. When induced within the neural crest lineage, pups die at birth. A variable phenotype develops from E11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia, major ocular and forebrain anomalies, and cardiovascular malformations. Neural crest derivatives in the body appear unaffected. Transcription of effectors of developmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors (Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression of Hoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessary in anterior cephalic NC for craniofacial, visual, auditory, and cardiovascular development

    Krox20 heterozygous mice: A model of aortic regurgitation associated with decreased expression of fibrillar collagen genes

    No full text
    International audienceBackground. - The mechanism involved in the onset of aortic valve (AoV) disease remains unclear despite its poor prognosis and frequency. Recently, we reported that Krox20 (EGR2 in humans) is involved in AoV development and dysfunction. Aim. - Analyze Krox20 heterozygous mice (Krox20(+/-)) to discover whether incomplete expression of Krox20 can cause valvular diseases. Methods. - Transcriptional levels of Col1a2/COL1A2 and Krox20/EGR2 in AoVs from Krox20(+/-) mice and human patients operated on for severe aortic regurgitation were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Human control valves were obtained from three transplanted patients without AoV disease. Twenty-one heterozygous Krox20(+/-) mice were compared with 35 controls at different ages. Three independent measurements of valve thickness were performed on magnified tissue sections using Image J software. In vivo valve structure and function were evaluated using the high-frequency Vevo (R) 2100 echocardiogram. Results. - qRT-PCR analysis using AoVs from patients with severe aortic regurgitation showed a decrease in EGR2 expression associated with significant downregulation of COL1A2 expression (P 7 vs. < 7 months: 136 +/- 48 vs. 102 +/- 41 mu m; P<0.001). Moreover, the aortic leaflets of embryonic day 18.5 Krox20(+/-) embryos were significantly more thickened than those from controls, suggesting that this disease begins during embryonic development. Echo-Doppler analysis showed a significant increase in AoV dysfunction in heterozygous versus control mice (53% vs. 17%; P<0.001), suggesting a tight relationship between valve architecture and function. Morphometric analysis revealed that the most severe AoV dysfunction was always associated with the most thickened valves. Classic histological analysis revealed that mutant AoVs had extracellular matrix disorganization, with features of human myxomatous degeneration, including excess of proteoglycan deposition in spongiosa and reduction of collagen fibre in fibrosa, but no calcification. Conclusion. - Decreased expression of Krox20 in mice causes degeneration of the aortic leaflets and disorganization of the extracellular matrix, causing valvular dysfunction. (C) 2015 Elsevier Masson SAS. All rights reserved

    Random walk with restart on multiplex and heterogeneous biological networks

    No full text
    International audienceRecent years have witnessed an exponential growth in the number of identified interactions between biological molecules. These interactions are usually represented as large and complex networks, calling for the development of appropriated tools to exploit the functional information they contain. Random walk with restart is the state-of-the-art guilt-by-association approach. It explores the network vicinity of gene/protein seeds to study their functions, based on the premise that nodes related to similar functions tend to lie close to each others in the networks. In the present study, we extended the random walk with restart algorithm to multiplex and heterogeneous networks. The walk can now explore different layers of physical and functional interactions between genes and proteins, such as protein-protein interactions and co-expression associations. In addition, the walk can also jump to a network containing different sets of edges and nodes, such as phenotype similarities between diseases. We devised a leave-one-out cross-validation strategy to evaluate the algorithms abilities to predict disease-associated genes. We demonstrate the increased performances of the multiplex-heterogeneous random walk with restart as compared to several random walks on monoplex or heterogeneous networks. Overall, our framework is able to leverage the different interaction sources to outperform current approaches. Finally, we applied the algorithm to predict genes candidate for being involved in the Wiedemann-Rautenstrauch syndrome, and to explore the network vicinity of the SHORT syndrome. The source code and the software are freely available at: https://github. com/alberto-valdeolivas/RWR-MH

    Msx1 cre ERT 2 knock-In allele: A useful tool to target embryonic and adult cardiac valves

    No full text
    Heart valve development begins with the endothelial-to-mesenchymal transition (EMT) of endo-cardial cells. Although lineage studies have demonstrated contributions from cardiac neural crest and epicardium to semilunar and atrioventricular (AV) valve formation, respectively, most valve mesenchyme derives from the endocardial EMT. Specific Cre mouse lines for fate-mapping analyses of valve endocardial cells are limited. Msx1 displayed expression in AV canal endocardium and cushion mesenchyme between E9.5 and E11.5, when EMT is underway. Additionally, previous studies have demonstrated that deletion of Msx1 and its paralog Msx2 results in hypoplastic AV cushions and impaired endocardial signaling. A knock-in tamoxifen-inducible Cre line was recently generated (Msx1 CreERT2) and characterized during embryonic development and after birth, and was shown to recapit-ulate the endogenous Msx1 expression pattern. Here, we further analyze this knock-in allele and track the Msx1-expressing cells and their descendants during cardiac development with a particular focus on their contribution to the valves and their precursors. Thus, Msx1 CreERT2 mice represent a useful model for lineage tracing and conditional gene manipulation of endocardial and mesenchymal cushion cells essential to understand mechanisms of valve development and remodeling

    Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve

    No full text
    International audienceAlthough cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20-deficient embryos. Genetic lineage tracing in Krox20(-/-) mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20-expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve

    Loss of Krox20 results in aortic valve regurgitation and impaired transcriptional activation of fibrillar collagen genes

    No full text
    International audienceAIMS: Heart valve maturation is achieved by the organization of extracellular matrix (ECM) and the distribution of valvular interstitial cells. However, the factors that regulate matrix components required for valvular structure and function are unknown. Based on the discovery of its specific expression in cardiac valves, we aimed to uncover the role of Krox20 (Egr-2) during valve development and disease. METHODS AND RESULTS: Using series of mouse genetic tools, we demonstrated that loss of function of Krox20 caused significant hyperplasia of the semilunar valves, while atrioventricular valves appeared normal. This defect was associated with an increase in valvular interstitial cell number and ECM volume. Echo Doppler analysis revealed that adult mutant mice had aortic insufficiency. Defective aortic valves (AoVs) in Krox20(-/-) mice had features of human AoV disease, including excess of proteoglycan deposition and reduction of collagen fibres. Furthermore, examination of diseased human AoVs revealed decreased expression of KROX20. To identify downstream targets of Krox20, we examined expression of fibrillar collagens in the AoV leaflets at different stages in the mouse. We found significant down-regulation of Col1a1, Col1a2, and Col3a1 in the semilunar valves of Krox20 mutant mice. Utilizing in vitro and in vivo experiments, we demonstrated that Col1a1 and Col3a1 are direct targets of Krox20 activation in interstitial cells of the AoV. CONCLUSION: This study identifies a previously unknown function of Krox20 during heart valve development. These results indicate that Krox20-mediated activation of fibrillar Col1a1 and Col3a1 genes is crucial to avoid postnatal degeneration of the AoV leaflets

    Piezo1 is required for outflow tract and aortic valve development.

    No full text
    International audienceAims: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development.Methods and results: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from patients who suffer from left ventricular outflow tract obstructions (LVOTO) and identified 3 probands who each harboured potentially pathogenic variants in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity. Expressing these dominant negative PIEZO1 variants in zebrafish endothelium leads to defective aortic valve development.Conclusion: These data indicate that the mechanosensitive ion channel piezo1 is required for outflow tract and aortic valve development

    Piezo1 is required for outflow tract and aortic valve development

    No full text
    Aims: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development. Methods and results: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. In particular, we have found that mechanical forces generated during the cardiac cycle activate Piezo1 which triggers nitric oxide to be released in the outflow tract. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from a cohort of bicuspid aortic valve patients and identified 3 probands who each harboured a novel variant in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity and defective aortic valve development. Conclusion: These data indicate that the mechanosensitive ion channel piezo1 is required for OFT and aortic valve development and, furthermore, dominant negative variants of PIEZO1 appear to be associated with BAV in humans

    Piezo1 is required for outflow tract and aortic valve development

    No full text
    Aims: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development. Methods and results: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. In particular, we have found that mechanical forces generated during the cardiac cycle activate Piezo1 which triggers nitric oxide to be released in the outflow tract. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from a cohort of bicuspid aortic valve patients and identified 3 probands who each harboured a novel variant in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity and defective aortic valve development. Conclusion: These data indicate that the mechanosensitive ion channel piezo1 is required for OFT and aortic valve development and, furthermore, dominant negative variants of PIEZO1 appear to be associated with BAV in humans
    corecore