7 research outputs found
A novel Approach for Detection of Sindbis Viral RNA
SINV was approved as a causative agent of pogosta disease. The seroprevalence of SINV antibodies for the Finnish population is around 2%, considering the prevalence varies between different regions of Finland. While the seroprevalence of SINV antibodies in Sweden highest in central parts of the country. The annual incidence rate in endemic regions of affected countries ranges from 2.7/100,000 in Finland and 2.9/100,000 in Sweden to 18/100,000 in Northern Karelia. This is the most widely distributed of all known arboviruses, affecting all age groups. This study describes the design and evaluation of a rapid and robust quantitative PCR assay able to detect a wide range of different SINV. Primers with the potential to detect all SINV were designed from conserved regions of all different strains of sindbis virus sequences, as identified from multiple alignments. By using SYBR-green-based quantitative real-time PCR (QPCR) protocols, this QPCR assay is able to detect 50-100 target molecules of synthetic DNA and less than 100 copies of viral RNA of different SINV. SINV RNA was also detected in clinical samples of patients with SINV has been linked t
Characteristics of post hoc subgroup analyses of oncology clinical trials: A systematic review
BACKGROUND: Subgroup analyses in clinical trials assess intervention effects on specific patient subgroups, ensuring generalizability. However, they are usually only able to generate hypotheses rather than definitive conclusions. This study examined the prevalence and characteristics of post hoc subgroup analysis in oncology.
METHODS: We systematically reviewed published subgroup analyses from 2000 to 2022. We included articles presenting secondary, post hoc, or subgroup analyses of interventional clinical trials in oncology, cancer survivorship, or cancer screening, published separately from the original clinical trial publication. We collected cancer type, year of publication, where and how subgroup analyses were reported, and funding.
RESULTS: Out of 16 487 screened publications, 1612 studies were included, primarily subgroup analyses of treatment trials for solid tumors (82%). Medical writers contributed to 31% of articles, and 58% of articles reported conflicts of interest. Subgroup analyses increased significantly over time, with 695 published between 2019 and 2022, compared to 384 from 2000 to 2014. Gastrointestinal tumors (25%) and lymphoid lineage tumors (39%) were the most frequently studied solid and hematological malignancies, respectively. Industry funding and reporting of conflicts of interest increased over time. Subgroup analyses often neglected to indicate their secondary nature in the title. Most authors were from high-income countries, most commonly North America (45%).
CONCLUSIONS: This study demonstrates the rapidly growing use of post hoc subgroup analysis of oncology clinical trials, revealing that the majority are supported by pharmaceutical companies, and they frequently fail to indicate their secondary nature in the title. Given the known methodological limitations of subgroup analyses, caution is recommended among authors, readers, and reviewers when conducting and interpreting these studies
Defining an optimal cut-off point for reticulocyte hemoglobin as a marker for iron deficiency anemia: An ROC analysis.
Reticulocyte hemoglobin (CHr) is a measure of the amount of hemoglobin in reticulocytes and a marker of cell hemoglobinization. In this study, we aimed to find the optimal cut-off point for reticulocyte hemoglobin to diagnose iron deficiency anemia using multiple methods. A total of 309 patients were included. The median age at diagnosis was 54 years. Most were females (71.2%). 68% had iron deficiency anemia. Patients with IDA had significantly lower levels of CHr compared to those who had non-IDA (p < 0.0001). The optimal cut-off value of CHr for detecting IDA, determined using various methods, was 30.15 pg. This cut-off point had a sensitivity of 87.8% and a specificity of 77.7%. CHr showed a significant positive correlation with hemoglobin, mean corpuscular volume, serum iron, serum ferritin, and transferrin saturation and a significant negative correlation with total iron-binding capacity. CHr levels correlate with most established laboratory tests for IDA. It reliably detects IDA. Our results indicate the importance of CHr in diagnosing IDA, and that CHr should be used more widely in suspected cases of IDA since it is a cheap, fast, and reliable test
Fabrication and characterization of Fe(16)N(2)Micro-Flake powders and their extrusion-based 3D printing into permanent magnet form
Fe(16)N(2)is a compound with giant saturation magnetization approaching or exceeding that of rare-earth-based permanent magnets. The abundance of its elements and low-cost synthesis of this compound has made it highly attractive to replace rare-earth-based permanent magnets that are becoming ever more expensive to utilize in applications. Herein, its synthesis from Fe flakes by surfactant-assisted high energy ball milling is demonstrated. The synthesized Fe flakes are then reduced under forming gas (Ar/H-2), followed by nitridation at low temperatures under ammonia (NH3) gas. The formation of Fe(16)N(2)phase exceeding 50% by volumetric fraction is observed and confirmed by X-ray diffraction and Mossbauer analysis. Following the Fe(16)N(2)flake synthesis, extrusion-based 3D printing is used to check the feasibility of incorporation of the flakes into functional polymer matrix composites. For this purpose, an ink of intermixed synthesized powder with photoresist SU8 is used. Using the prescribed method, a prototype Fe(16)N(2)permanent magnet composite is successfully produced using an additive manufacturing approach. Such efficient production of Fe(16)N(2)powders via routes already applicable to magnet production and the consolidation of the powders with 3D printing are expected to open up new possibilities for next-generation permanent magnet applications
Thermogravimetric kinetics study of scrap tires pyrolysis using silica embedded with NiO and/or MgO nanocataly
In this study, a set of three new silica-based embedded with NiO and/or MgO nanocatalysts (SBNs) have been prepared and tested for the pyrolysis of scrap tires (STs). The intent is to identify and optimize the best nanocatalyst that decreases the operating temperature and speeds up the pyrolysis reaction rate. The influence of the three prepared SBNs nanocatalysts on STs was scrutinized using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The kinetic triplets were estimated utilizing the isoconversional method of the Ozawa–Flynn–Wall (OFW) corrected model. Experimental TGA and FT-IR results showed a thermal decomposition of all volatile organic additives alongside the polyvinyl compounds at a lower temperature in the presence of these SBNs. However, a competitive decomposition behavior appeared for each SBN nanocatalysts. The kinetic triplets’ findings showed different effective activation energy trends at two different conversion regions (low and high conversions), suggesting different reaction mechanisms confirmed by the reaction kinetic models. Interestingly, NiO-MgO-SBNs showed the highest reaction rate for this thermo-pyrolysis of STs, which could be because of synergetic interaction between NiO and MgO nanoparticles. Moreover, the results of the change in Gibbs free energy of activation (ΔG‡) indicated the promising catalytic activity for those SBNs by promoting the spontaneity of pyrolysis reaction. These proof-of-concept findings could promote the futuristic use of NiO-MgO-SBNs at the industrial level toward sustainable ST pyrolysis.The authors thankfully acknowledge Deanship of Scientific Research in An-Najah National University, Nablus, Palestine for providing financial support to this study via Project Number (ANNU-1819-Sc008). The technical assistance provided by Mr. Nafith Dwikat and by the faculty of Science at An-Najah National University (ANNU), Nablus, Palestine is also highly appreciated.Scopu
Photocurable pentaerythritol triacrylate/lithium phenyl‐2,4,6‐trimethylbenzoylphosphinate‐based ink for extrusion‐based 3D printing of magneto‐responsive materials
Recent advances in additive manufacturing made it feasible to fabricate products with desired shapes and features. Herein, a new, photocurable 3D printer ink mainly based on pentaerythritol triacrylate (PETA) is reported. To achieve rapid curing needed for 3D printing process, high performance water-soluble photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), was emulsified in PETA monomers and this suspension was evaluated for its polymerization kinetics by exposing to 395 nm UV-light. The distinct influences of LAP and triethanolamine (TEA) concentrations on photo-polymerization and printability were examined and an optimum concentration for extrusion-based 3D printing was found to be 10 mM and 1.62 M for LAP and TEA, respectively. Synthesized PETA-based 3D printer ink was functionalized by dispersing magnetic particles/flakes into the mixture, and consequently, a magneto responsive ink was obtained to be used in specialized applications. A ring-shaped structure embedded with micron sized iron flakes was printed as a prototype. This study presents a versatile photo-curable polymer formulation with possible translation to high performance 3D printing of customizable shapes that can be utilized in a wide range of areas such as micro-robotics and medical science
Myelodysplastic Syndromes and Myelodysplastic Syndromes/Myeloproliferative Neoplasms: A Real-World Experience From a Developing Country
PURPOSEMyelodysplastic syndromes (MDS) include a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis. They manifest as dysplasia in bone marrow hemopoietic elements associated with peripheral cytopenias with variable risk of AML transformation.PATIENTS AND METHODSWe analyzed retrospectively registry data collected prospectively from patients with primary MDS and patients with MDS/myeloproliferative neoplasm (MPN) in the Jordan University Hospital between January 2007 and September 2021. The registry captured epidemiologic information such as date of diagnosis, age, gender, date of AML transformation, cytogenetics, MDS subtype, risk group according to Revised International Prognostic Scoring System, and survival. The registry also captured baseline ferritin, B12, and lactate dehydrogenase levels.RESULTSA total of 112 patients with MDS and MDS/MPN were included in the registry. Median age at diagnosis was 59 years. The male-to-female ratio was about 1.2. In a multivariate cox regression model, baseline serum ferritin significantly affected survival as patients with levels exceeding 1,000 μg/L had a risk of death three times higher compared with those with <1,000 μg/L levels (P < .05).CONCLUSIONTo our knowledge, our study is the first comprehensive study examining the epidemiology and prognostic factors in patients with MDS and patients with MDS/MPN in Jordan. Our results show that MDS and MDS/MPN epidemiology in Jordan is different compared with Western countries. Our results also show that baseline serum ferritin levels can be used as a prognostic marker for patients with MDS