339 research outputs found

    Portable and Permanent

    Get PDF
    This poultry range shelter features permanent structure in a portable type building. It\u27s built with simple, rigid construction using casein glue at important joints. The use of knee braces or gussets to join rafters and studding (see illustrations) eliminates cross bracing inside the shelter, allowing easy access to the inside. The complete rafter and stud assembly can be nailed and glued before putting it up

    Roles of Extracellular Vesicles in Opioid Addiction: Potential Applications

    Get PDF
    Extracellular Vesicles (EVs) are lipid-bilayer membranous vesicles that facilitate intercellular communication via their secretion. EVs contain a variety of cargoes that reflect the intracellular environment of their host cells, and these cargoes can induce functional changes in recipient cells. A wide body of previous research has demonstrated that EVs play a role in a diverse range of disease pathologies as well as regular function and have emerged as promising vehicles for therapeutics and drug-delivery systems. Unsurprisingly, some work has recently been published implicating EVs in drug addiction pathways and therapeutics. Given the pressing scope of the opioid misuse and abuse in the U.S., it is necessary to consider the role of EVs in the development of opioid dependence and tolerance, as well as their role in potential therapeutics. The current review seeks to identify work investigating the role of EVs in opioid addiction and identify gaps and future directions in the literature.https://digitalcommons.unmc.edu/surp2020/1024/thumbnail.jp

    Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure

    Get PDF
    Opioid abuse has become a major public health crisis that affects millions of individuals across the globe. This widespread abuse of prescription opioids and dramatic increase in the availability of illicit opioids have created what is known as the opioid epidemic. Pregnant women are a particularly vulnerable group since they are prescribed for opioids such as morphine, buprenorphine, and methadone, all of which have been shown to cross the placenta and potentially impact the developing fetus. Limited information exists regarding the effect of oxycodone (oxy) on synaptic alterations. To fill this knowledge gap, we employed an integrated system approach to identify proteomic signatures and pathways impacted on mixed neuroglial cultures treated with oxy for 24 h. Differentially expressed proteins were mapped onto global canonical pathways using ingenuity pathway analysis (IPA), identifying enriched pathways associated with ephrin signaling, semaphorin signaling, synaptic long-term depression, endocannabinoid signaling, and opioid signaling. Further analysis by ClueGO identified that the dominant category of differentially expressed protein functions was associated with GDP binding. Since opioid receptors are G-protein coupled receptors (GPCRs), these data indicate that oxy exposure perturbs key pathways associated with synaptic function

    Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies

    Get PDF
    Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options

    A Comprehensive Study to Delineate the Role of an Extracellular Vesicle-Associated MicroRNA-29a in Chronic Methamphetamine Use Disorder

    Get PDF
    Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage

    A comprehensive study to delineate the role of an extracellular vesicle-associated microRNA-29a in chronic methamphetamine use disorder

    Get PDF
    Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR- 29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EVassociated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma fromMUDsubjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EVassociated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage

    A Holistic Systems Approach to Characterize the Impact of Pre- and Post-natal Oxycodone Exposure on Neurodevelopment and Behavior

    Get PDF
    Background: Increased risk of oxycodone (oxy) dependency during pregnancy has been associated with altered behaviors and cognitive deficits in exposed offspring. However, a significant knowledge gap remains regarding the effect of in utero and postnatal exposure on neurodevelopment and subsequent behavioral outcomes. Methods: Using a preclinical rodent model that mimics oxy exposure in utero (IUO) and postnatally (PNO), we employed an integrative holistic systems biology approach encompassing proton magnetic resonance spectroscopy (1H-MRS), electrophysiology, RNA-sequencing, and Von Frey pain testing to elucidate molecular and behavioral changes in the exposed offspring during early neurodevelopment as well as adulthood. Results: 1H-MRS studies revealed significant changes in key brain metabolites in the exposed offspring that were corroborated with changes in synaptic currents. Transcriptomic analysis employing RNA-sequencing identified alterations in the expression of pivotal genes associated with synaptic transmission, neurodevelopment, mood disorders, and addiction in the treatment groups. Furthermore, Von Frey analysis revealed lower pain thresholds in both exposed groups. Conclusions: Given the increased use of opiates, understanding the persistent developmental effects of these drugs on children will delineate potential risks associated with opiate use beyond the direct effects in pregnant women

    IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis

    Get PDF
    Background Schistosoma haematobium, the helminth causing urogenital schistosomiasis, is a known bladder carcinogen. Despite the causal link between S. haematobium and bladder cancer, the underlying mechanisms are poorly understood. S. haematobium oviposition in the bladder is associated with angiogenesis and urothelial hyperplasia. These changes may be pre-carcinogenic events in the bladder. We hypothesized that the Interleukin-4-inducing principle of Schistosoma mansoni eggs (IPSE), an S. haematobium egg-secreted “infiltrin” protein that enters host cell nuclei to alter cellular activity, is sufficient to induce angiogenesis and urothelial hyperplasia. Methods: Mouse bladders injected with S. haematobium eggs were analyzed via microscopy for angiogenesis and urothelial hyperplasia. Endothelial and urothelial cell lines were incubated with recombinant IPSE protein or an IPSE mutant protein that lacks the native nuclear localization sequence (NLS-) and proliferation measured using CFSE staining and real-time monitoring of cell growth. IPSE’s effects on urothelial cell cycle status was assayed through propidium iodide staining. Endothelial and urothelial cell uptake of fluorophore-labeled IPSE was measured. Findings: Injection of S. haematobium eggs into the bladder triggers angiogenesis, enhances leakiness of bladder blood vessels, and drives urothelial hyperplasia. Wild type IPSE, but not NLS-, increases proliferation of endothelial and urothelial cells and skews urothelial cells towards S phase. Finally, IPSE is internalized by both endothelial and urothelial cells. Interpretation: IPSE drives endothelial and urothelial proliferation, which may depend on internalization of the molecule. The urothelial effects of IPSE depend upon its NLS. Thus, IPSE is a candidate pro-carcinogenic molecule of S. haematobium. Summary Schistosoma haematobium acts as a bladder carcinogen through unclear mechanisms. The S. haematobium homolog of IPSE, a secreted schistosome egg immunomodulatory molecule, enhances angiogenesis and urothelial proliferation, hallmarks of pre-carcinogenesis, suggesting IPSE is a key pro-oncogenic molecule of S. haematobium

    A Predominant Role for Parenchymal c-Jun Amino Terminal Kinase (JNK) in the Regulation of Systemic Insulin Sensitivity

    Get PDF
    It has been established that c-Jun N-terminal kinase 1 (JNK1) is essential to the pathogenesis of insulin resistance and type 2 diabetes. Although JNK influences inflammatory signaling pathways, it remains unclear whether its activity in macrophages contributes to adipose tissue inflammation and ultimately to the regulation of systemic metabolism. To address whether the action of this critical inflammatory kinase in bone marrow-derived elements regulates inflammatory responses in obesity and is sufficient and necessary for the deterioration of insulin sensitivity, we performed bone marrow transplantation studies with wild type and JNK1-deficient mice. These studies illustrated that JNK1-deficiency in the bone marrow-derived elements (BMDE) was insufficient to impact macrophage infiltration or insulin sensitivity despite modest changes in the inflammatory profile of adipose tissue. Only when the parenchymal elements lacked JNK1 could we demonstrate a significant increase in systemic insulin sensitivity. These data indicate that while the JNK1 activity in BMDE is involved in metabolic regulation and adipose milieu, it is epistatic to JNK1 activity in the parenchymal tissue for regulation of metabolic homeostasis
    corecore