50 research outputs found
Inter-generational consequences for growing Caenorhabditis elegans in liquid
In recent years, studies in Caenorhabditis elegans nematodes have shown that different stresses can generate multigenerational changes. Here, we show that worms that grow in liquid media, and also their plate-grown progeny, are different from worms whose ancestors were grown on plates. It has been suggested that C. elegans might encounter liquid environments in nature, although actual observations in the wild are few and far between. By contrast, in the laboratory, growing worms in liquid is commonplace, and often used as an alternative to growing worms on agar plates, to control the composition of the wormsâ diet, to starve (and synchronize) worms or to grow large populations for biochemical assays. We found that plate-grown descendants of M9 liquid medium-grown worms were longer than control worms, and the heritable effects were already apparent very early in development. We tested for the involvement of different known epigenetic inheritance mechanisms, but could not find a single mutant in which these inter-generational effects are cancelled. While we found that growing in liquid always leads to inter-generational changes in the wormsâ size, trans-generational effects were found to be variable, and in some cases, the effects were gone after one to two generations. These results demonstrate that standard cultivation conditions in early life can dramatically change the wormsâ physiology in adulthood, and can also affect the next generations. This article is part of the theme issue âDeveloping differences: early-life effects and evolutionary medicineâ.Fil: Lev, Itamar. Universitat Tel Aviv; IsraelFil: Bril, Roberta. Universitat Tel Aviv; IsraelFil: Liu, Yunan. Universitat Tel Aviv; IsraelFil: CerĂ©, Lucila InĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de FisiologĂa Experimental. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂmicas y FarmacĂ©uticas. Instituto de FisiologĂa Experimental; Argentina. Universitat Tel Aviv; IsraelFil: Rechavi, Oded. Universitat Tel Aviv; Israel. Tufts University; Estados Unido
Small RNAs Reflect Grandparental Environments in Apomictic Dandelion
Plants can show long-term effects of environmental stresses and in some cases a stress âmemoryâ has been reported to persist across generations, potentially mediated by epigenetic mechanisms. However, few documented cases exist of transgenerational effects that persist for multiple generations and it remains unclear if or how epigenetic mechanisms are involved. Here, we show that the composition of small regulatory RNAs in apomictic dandelion lineages reveals a footprint of drought stress and salicylic acid treatment experienced two generations ago. Overall proportions of 21 and 24ânt RNA pools were shifted due to grandparental treatments. While individual genes did not show strong up- or downregulation of associated sRNAs, the subset of genes that showed the strongest shifts in sRNA abundance was significantly enriched for several GO terms including stress-specific functions. This suggests that a stress-induced signal was transmitted across multiple unexposed generations leading to persistent changes in epigenetic gene regulation
Intercellular Transfer of Oncogenic H-Ras at the Immunological Synapse
Immune cells establish dynamic adhesive cellâcell interactions at a specific contact region, termed the immunological synapse (IS). Intriguing features of the IS are the formation of regions of plasma membrane fusion and the intercellular exchange of membrane fragments between the conjugated cells. It is not known whether upon IS formation, intact intracellular proteins can transfer from target cells to lymphocytes to allow the transmission of signals across cell boundaries. Here we show by both FACS and confocal microscopy that human lymphocytes acquire from the cells they scan the inner-membrane protein H-Ras, a G-protein vital for common lymphocyte functions and a prominent participant in human cancer. The transfer was cell contact-dependent and occurred in the context of cell-conjugate formation. Moreover, the acquisition of oncogenic H-RasG12V by natural killer (NK) and T lymphocytes had important biological functions in the adopting lymphocytes: the transferred H-RasG12V induced ERK phosphorylation, increased interferon-Îł and tumor necrosis factor-α secretion, enhanced lymphocyte proliferation, and augmented NK-mediated target cell killing. Our findings reveal a novel mode of cell-to-cell communicationâallowing lymphocytes to extend the confines of their own proteomeâwhich may moreover play an important role in natural tumor immunity
Recommended from our members
Plant and animal small RNA communications between cells and organisms
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination
Vertically- and horizontally-transmitted memories â the fading boundaries between regeneration and inheritance in planaria
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria â flatworms that can reproduce through asymmetric fission â avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source â the potential capacity of the brain to produce long-lasting epigenetic changes
RNAlysis: analyze your RNA sequencing data without writing a single line of code
Abstract Background Among the major challenges in next-generation sequencing experiments are exploratory data analysis, interpreting trends, identifying potential targets/candidates, and visualizing the results clearly and intuitively. These hurdles are further heightened for researchers who are not experienced in writing computer code since most available analysis tools require programming skills. Even for proficient computational biologists, an efficient and replicable system is warranted to generate standardized results. Results We have developed RNAlysis, a modular Python-based analysis software for RNA sequencing data. RNAlysis allows users to build customized analysis pipelines suiting their specific research questions, going all the way from raw FASTQ files (adapter trimming, alignment, and feature counting), through exploratory data analysis and data visualization, clustering analysis, and gene set enrichment analysis. RNAlysis provides a friendly graphical user interface, allowing researchers to analyze data without writing code. We demonstrate the use of RNAlysis by analyzing RNA sequencing data from different studies using C. elegans nematodes. We note that the software applies equally to data obtained from any organism with an existing reference genome. Conclusions RNAlysis is suitable for investigating various biological questions, allowing researchers to more accurately and reproducibly run comprehensive bioinformatic analyses. It functions as a gateway into RNA sequencing analysis for less computer-savvy researchers, but can also help experienced bioinformaticians make their analyses more robust and efficient, as it offers diverse tools, scalability, automation, and standardization between analyses
WorMachine: machine learning-based phenotypic analysis tool for worms
Abstract Background Caenorhabditis elegans nematodes are powerful model organisms, yet quantification of visible phenotypes is still often labor-intensive, biased, and error-prone. We developed WorMachine, a three-step MATLAB-based image analysis software that allows (1) automated identification of C. elegans worms, (2) extraction of morphological features and quantification of fluorescent signals, and (3) machine learning techniques for high-level analysis. Results We examined the power of WorMachine using five separate representative assays: supervised classification of binary-sex phenotype, scoring continuous-sexual phenotypes, quantifying the effects of two different RNA interference treatments, and measuring intracellular protein aggregation. Conclusions WorMachine is suitable for analysis of a variety of biological questions and provides an accurate and reproducible analysis tool for measuring diverse phenotypes. It serves as a âquick and easy,â convenient, high-throughput, and automated solution for nematode research