411 research outputs found

    MadEvent: Automatic Event Generation with MadGraph

    Full text link
    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders.Comment: 11 pages, MadGraph home page at http://madgraph.physics.uiuc.ed

    The underlying event and fragmentation

    Full text link
    A good fit to the CDF underlying event is obtained in the multiple parton scattering picture using HERWIG, after modifying the cluster hadronization algorithm as suggested by our previous study and adopting a larger maximum cluster size. The number of scatters per event is generated simply as a Poisson distribution. If our picture is correct, the baryon yield should be enhanced in the underlying event. This effect may be studied by measuring the proton-to-pion ratio.Comment: 23 pages, 8 figure

    Interfacing Modbus Plus to EPICS for KEKB Accelerator Control System

    Get PDF
    The KEKB Accelerator control system[1] is based on EPICS(Experimental Physics and Industrial Control System)[2] and uses many PLCs in the magnet protec-tion systems and the radiation safety system. In order to monitor the interlock status, Modbus Plus[3] is adopted as the protocol between an IOC(Input/Output Controller) and PLCs. For this purpose, a device support and a driver support for Modbus Plus have been developed. The device/driver support modules allow an IOC to communicate with PLC-s by asynchronous I/O transactions, in such a manner that the GPIB devices do. With the software modules, an IOC works always as a master device on the Modbus Plus net-work to read the status of controlled devices from PLC memory. While the main use of the software is to read the interlock status, it is also used to reset the interlock sys-tems. Details of the software structure are described. An ap-plication of this software in the KEKB accelerator control system is also presented.

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    A Gribov equation for the photon Green's function

    Full text link
    We present a derivation of the Gribov equation for the gluon/photon Green's function D(q). Our derivation is based on the second derivative of the gauge-invariant quantity Tr ln D(q), which we interpret as the gauge-boson `self-loop'. By considering the higher-order corrections to this quantity, we are able to obtain a Gribov equation which sums the logarithmically enhanced corrections. By solving this equation, we obtain the non-perturbative running coupling in both QCD and QED. In the case of QCD, alpha_S has a singularity in the space-like region corresponding to super-criticality, which is argued to be resolved in Gribov's light-quark confinement scenario. For the QED coupling in the UV limit, we obtain a \propto Q^2 behaviour for space-like Q^2=-q^2. This implies the decoupling of the photon and an NJLVL-type effective theory in the UV limit.Comment: 12 pages, 5 figures; version to be published in Eur. Phys. J.
    corecore