8,188 research outputs found

    Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}

    Full text link
    Our inelastic neutron scattering experiments of the spin excitations in the slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the application of a magnetic field of 5 Tesla, the low-temperature susceptibility undergoes a weight redistribution centered at the spin-gap energy. Furthermore, by comparing the temperature dependence of the neutron data with ac-susceptibility and magnetization measurements, we conclude that the filling in of the spin gap tracks the irreversibility/melting temperature rather than Tc2, which indicates an unusual interplay between the magnetic vortices and the spin excitations even in the slightly overdoped regime of high-temperature superconductors.Comment: 7 pages, including 5 figure

    Thermal Equilibria of Optically Thin, Magnetically Supported, Two-Temperature, Black Hole Accretion Disks

    Full text link
    We obtained thermal equilibrium solutions for optically thin, two-temperature black hole accretion disks incorporating magnetic fields. The main objective of this study is to explain the bright/hard state observed during the bright/slow transition of galactic black hole candidates. We assume that the energy transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung, synchrotron, and inverse Compton scattering are considered as the radiative cooling processes. In order to complete the set of basic equations, we specify the magnetic flux advection rate. We find magnetically supported (low-beta), thermally stable solutions. In these solutions, the total amount of the heating via the dissipation of turbulent magnetic fields goes into electrons and balances the radiative cooling. The low-β\beta solutions extend to high mass accretion rates and the electron temperature is moderately cool. High luminosities and moderately high energy cutoffs in the X-ray spectrum observed in the bright/hard state can be explained by the low-beta solutions.Comment: 24 pages, 10 figures,accepted for publication in Astrophysical Journa

    Brane in 6D with increasing gravitational trapping potential

    Full text link
    A new solution to Einstein equations in (1+5)-spacetime with an embedded (1+3) brane is given. This solution localizes the zero modes of all kinds of matter fields and 4-gravity on the (1+3) brane by an increasing, transverse gravitational potential. This localization occurs despite the fact that the gravitational potential is not a decreasing exponential, and asymptotically approaches a finite value rather than zero.Comment: Revised paper. 6 pages, revtex 4. to be published in PR

    Pulsed UCN production using a Doppler shifter at J-PARC

    Get PDF
    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-m/s\mathrm{m/s} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-m/s\mathrm{m/s} velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is 8.33 Hz8.33~\mathrm{Hz} and the time width of the pulse at production is 4.4 ms4.4~\mathrm{ms}. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW1~\mathrm{MW}-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm58~\mathrm{nm} is 1.6×102 cps1.6 \times 10^{2}~\mathrm{cps}, while that of the true UCNs is 80 cps80~\mathrm{cps}. The spatial density at production is 1.4 UCN/cm31.4~\mathrm{UCN/cm^{3}}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment (nEDM).Comment: 32 pages, 15 fugures. A grammatical error was fixe

    A small angle neutron scattering study of the vortex matter in La{2-x}Sr{x}CuO{4} (x=0.17)

    Full text link
    The magnetic phase diagram of slightly overdoped La{2-x}Sr{x}CuO{4} (x=0.17) is characterised by a field-induced hexagonal to square transition of the vortex lattice at low fields (~0.4 Tesla) [R. Gilardi et al., Phys. Rev. Lett. 88, 217003 (2002)]. Here we report on a small angle neutron scattering study of the vortex lattice at higher fields, that reveals no further change of the coordination of the square vortex lattice up to 10.5 Tesla applied perpendicular to the CuO2 planes. Moreover, it is found that the diffraction signal disappears at temperatures well below Tc, due to the melting of the vortex lattice.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego, Jan. 16-21 2003; to be published in Int. J. Mod. Phys.

    X-Ray Fluctuations from Locally Unstable Advection-Dominated Disks

    Get PDF
    The response of advection-dominated accretion disks to local disturbances is examined by one-dimensional numerical simulations. It is generally believed that advection-dominated disks are thermally stable. We, however, find that any disurbance added onto accretion flow at large radii does not decay so rapidly that it can move inward with roughly the free-fall velocity. Although disturbances continue to be present, the global disk structure will not be modified largely. This can account for persistent hard X-ray emission with substantial variations observed in active galactic nuclei and stellar black hole candidates during the hard state. Moreover, when the disturbance reaches the innermost parts, an acoustic wave emerges, propagating outward as a shock wave. The resultant light variation is roughly (time) symmetric and is quite reminiscent of the observed X-ray shots of Cygnus X-1.Comment: plain TeX, 11 pages, without figures; to be published in ApJ Lette

    Steady Models of Optically Thin, Magnetically Supported Black Hole Accretion Disks

    Get PDF
    We obtained steady solutions of optically thin, single temperature, magnetized black hole accretion disks assuming thermal bremsstrahlung cooling. Based on the results of 3D MHD simulations of accretion disks, we assumed that the magnetic fields inside the disk are turbulent and dominated by azimuthal component. We decomposed magnetic fields into an azimuthally averaged mean field and fluctuating fields. We also assumed that the azimuthally averaged Maxwell stress is proportional to the total pressure. The radial advection rate of the azimuthal magnetic flux Φ˙\dot \Phi is prescribed as being proportional to ϖζ\varpi^{- \zeta}, where ϖ\varpi is the radial coordinate and ζ\zeta is a parameter which parameterizes the radial variation of Φ˙\dot \Phi. We found that when accretion rate M˙\dot M exceeds the threshold for the onset of the thermal instability, a magnetic pressure dominated new branch appears. Thus the thermal equilibrium curve of optically thin disk has a 'Z'-shape in the plane of surface density and temperature. This indicates that as the mass accretion rate increases, a gas pressure dominated optically thin hot accretion disk undergoes a transition to a magnetic pressure dominated, optically thin cool disk. This disk corresponds to the X-ray hard, luminous disk in black hole candidates observed during the transition from a low/hard state to a high/soft state. We also obtained global steady transonic solutions containing such a transition layer.Comment: 11 pages, 6 figures, accepted by PAS

    Rotating Black Holes at Future Colliders. III. Determination of Black Hole Evolution

    Full text link
    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.Comment: typoes in eqs(82)-(84) corrected; version to appear in Phys. Rev. D; references and a footnote added; same manuscript with high resolution embedded figures available on http://www.gakushuin.ac.jp/univ/sci/phys/ida/paper
    corecore