70 research outputs found
Development research of pitching machine controlling variable ball using neural network
金沢大学工学部It is vey difficult to change simultaneously the pitching speeds and the course in the usual used pitching machines of the arm type and the two rollers type. In this study, the pitching machines which is able to pitch exactly a base ball into various courses and speeds using the three rollers controlled independently the number of rotations, is developed. In the pitching machine, the layered neural network system in which the learning data use each course and speeds as input data and number of rotation of each roller as output data is used. This machine is one of the intelligent sport machine. In this paper, the system and its machanism are described
フローショップ スケジューリング モンダイ ニ タイスル カクチョウ NEHホウ
P(論文)departmental bulletin pape
RANKLが誘導する破骨細胞分化におけるROSの役割と、Febuxostatによる破骨細胞分化抑制効果
Receptor activator of NF-κB ligand (RANKL), a critical mediator of osteoclastogenesis, is upregulated in multiple myeloma (MM). The xanthine oxidase inhibitor febuxostat, clinically used for prevention of tumor lysis syndrome, has been demonstrated to effectively inhibit not only the generation of uric acid but also the formation of reactive oxygen species (ROS). ROS has been demonstrated to mediate RANKL-mediated osteoclastogenesis. In the present study, we therefore explored the role of cancer-treatment-induced ROS in RANKL-mediated osteoclastogenesis and the suppressive effects of febuxostat on ROS generation and osteoclastogenesis. RANKL dose-dependently induced ROS production in RAW264.7 preosteoclastic cells; however, febuxostat inhibited the RANKL-induced ROS production and osteoclast (OC) formation. Interestingly, doxorubicin (Dox) further enhanced RANKL-induced osteoclastogenesis through upregulation of ROS production, which was mostly abolished by addition of febuxostat. Febuxostat also inhibited osteoclastogenesis enhanced in cocultures of bone marrow cells with MM cells. Importantly, febuxostat rather suppressed MM cell viability and did not compromise Dox’s anti-MM activity. In addition, febuxostat was able to alleviate pathological osteoclastic activity and bone loss in ovariectomized mice. Collectively, these results suggest that excessive ROS production by aberrant RANKL overexpression and/or anticancer treatment disadvantageously impacts bone, and that febuxostat can prevent the ROS-mediated osteoclastic bone damage
インターフェロン-γと協調したパノビノスタットによる骨髄腫細胞のPD-L1発現誘導
Immunotherapy is revolutionizing the treatment paradigm for multiple myeloma (MM). Interferon (IFN)-γ is essential for immune responses, whereas immune checkpoint molecules, such as programmed cell death-1 ligand-1 (PD-L1), mitigate the beneficial anti-tumor immune responses. As HDAC inhibitors alter the immunogenicity and anti-tumor immune responses, we here explored the regulation of PD-L1 expression in MM cells by the clinically available HDAC inhibitor panobinostat in the presence of IFN-γ. IFN-γ activated the STAT1-IRF1 pathway to upregulate PD-L1 expression in MM cells, and panobinostat was able to upregulate their PD-L1 expression without activating the STAT1-IRF1 pathway. Of note, panobinostat enhanced IFN-γR1 expression, which substantially increased the total and phosphorylated levels of STAT1 protein but reduced IRF1 protein levels through proteasomal degradation in the presence of IFN-γ. Panobinostat further enhanced the IFN-γ-mediated durable STAT1 activation in MM cells; STAT1 gene silencing abolished the PD-L1 upregulation by panobinostat and IFN-γ in combination, indicating a critical role for STAT1. These results suggest that panobinostat enhances PD-L1 expression by facilitating the IFN-γ-STAT1 pathway in a ligand-dependent manner in MM cells with ambient IFN-γ. PD-L1 upregulation should be taken into account when combining immunotherapies with panobinostat
Combination of Defucosylated AHM plus Lenalidomide
The immunomodulatory drug lenalidomide (Len) has drawn attention to potentiate antibody-dependent cellular cytotoxicity (ADCC)-mediated immunotherapies. We developed the defucosylated version (YB-AHM) of humanized monoclonal antibody against HM1.24 (CD317) overexpressed in multiple myeloma (MM) cells. In this study, we evaluated ADCC by YB-AHM and Len in combination against MM cells and their progenitors. YB-AHM was able to selectively kill via ADCC MM cells in bone marrow samples from patients with MM with low effector/target ratios, which was further enhanced by treatment with Len. Interestingly, Len also up-regulated HM1.24 expression on MM cells in an effector-dependent manner. HM1.24 was found to be highly expressed in a drug-resistant clonogenic ‘‘side population’’ in MM cells; and this combinatory treatment successfully reduced SP fractions in RPMI 8226 and KMS-11 cells in the presence of effector cells, and suppressed a clonogenic potential of MM cells in colony-forming assays. Collectively, the present study suggests that YB-AHM and Len in combination may become an effective therapeutic strategy in MM, warranting further study to target drug-resistant MM clonogenic cells
- …