86 research outputs found

    Yeast diversity in relation to the production of fuels and chemicals

    Get PDF
    In addition to ethanol, yeasts have the potential to produce many other industrially-relevant chemicals from numerous different carbon sources. However there remains a paucity of information about overall capability across the yeast family tree. Here, 11 diverse species of yeasts with genetic backgrounds representative of different branches of the family tree were investigated. They were compared for their abilities to grow on a range of sugar carbon sources, to produce potential platform chemicals from such substrates and to ferment hydrothermally pretreated rice straw under simultaneous saccharification and fermentation conditions. The yeasts differed considerably in their metabolic capabilities and production of ethanol. A number could produce significant amounts of ethyl acetate, arabinitol, glycerol and acetate in addition to ethanol, including from hitherto unreported carbon sources. They also demonstrated widely differing efficiencies in the fermentation of sugars derived from pre-treated rice straw biomass and differential sensitivities to fermentation inhibitors. A new catabolic property of Rhodotorula mucilaginosa (NCYC 65) was discovered in which sugar substrate is cleaved but the products are not metabolised. We propose that engineering this and some of the other properties discovered in this study and transferring such properties to conventional industrial yeast strains could greatly expand their biotechnological utility

    Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens

    Get PDF
    BackgroundTrunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development.ResultsThe integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution.ConclusionsThis study describes the repertoires of putative virulence functions in the genomes of ubiquitous grapevine trunk pathogens. Gene families with significantly faster rates of gene gain can now provide a basis for further studies of in planta gene expression, diversity by genome re-sequencing, and targeted reverse genetic approaches. The functional validation of potential virulence factors will lead to a more comprehensive understanding of the mechanisms of pathogenesis and virulence, which ultimately will enable the development of accurate diagnostic tools and effective disease management

    cDNA cloning of different amyloid peptide precursors in Alzheimer's disease

    No full text

    A GG Nucleotide Sequence of the 3′ Untranslated Region of Amyloid Precursor Protein mRNA Plays a Key Role in the Regulation of Translation and the Binding of Proteins

    No full text
    The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3′ untranslated region (3′UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3′UTR containing 8 nucleotides more than the short 3′UTR allows the recovery of an efficiency of translation similar to that of the long 3′UTR. Moreover, the two guanine residues located at the 3′ ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3′UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3′UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation

    From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein.

    No full text
    Despite intensive studies of the secretase-mediated processing of the amyloid precursor protein (APP) to form the amyloid β-peptide (Aβ), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under-investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid-degrading enzyme neprilysin, and aquaporin-1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD
    • …
    corecore