24 research outputs found
Energetical analysis of two different configurations of a liquid-gas compressed energy storage
In order to enhance the spreading of renewable energy sources in the Italian electric power market, as well as to promote self-production and to decrease the phase delay between energy production and consumption, energy storage solutions are catching on. Nowadays, in general, small size electric storage batteries represent a quite diffuse technology, while air liquid-compressed energy storage solutions are used for high size. The goal of this paper is the development of a numerical model for small size storage, environmentally sustainable, to exploit the higher efficiency of the liquid pumping to compress air. Two different solutions were analyzed, to improve the system efficiency and to exploit the heat produced by the compression phase of the gas. The study was performed with a numerical model implemented in Matlab, by analyzing the variation of hermodynamical parameters during the compression and the expansion phases, making an energetic assessment for the whole system. The results show a good global efficiency, thus making the system competitive with the smallest size storage batteries
The wind test on heat loss from three coil cavity receiver for a parabolic dish collector
The heat loss from cavity receiver in parabolic dish system determines the efficiency and cost effectiveness of the system. A modified three coil solar cavity receiver of inner wall area approximately three times of single coil receiver, is experimentally investigated to study the effect of fluid inlet temperature (Tfi=50 degrees C to 75 degrees C) and cavity inclination angle (theta = 0 degrees to 90 degrees) on the heat loss from receiver under wind condition for head on wind and side on wind velocity at 3 m/s. Overall it was found that the natural and forced convection total heat loss increases with increase in mean fluid temperature. The combined heat loss decreases sharply with the increase in cavity inclination and observed to be maximum for horizontal position of receiver and minimum with the receiver facing vertically downward for all investigations. The maximum heat loss in wind test (V=3m/s) is 1045 W at theta=0 degrees cavity inclination at mean fluid temperature 68 degrees C and minimum at 173 W theta=90 degrees at 53 degrees C. Total heat loss from the receiver under wind condition (V=3m/s) is up to 25% higher (1.25 times at 0 degrees inclination) than without wind at mean fluid temperature similar to 70 degrees C and minimum 19.64 % (1.2 times at 90 degrees inclination) in mean temperature similar to 50 degrees C. In horizontal position of the receiver (theta=0 degrees), the total heat loss by head on wind is about 1.23 times (18% higher ) as compared to side on wind (at fluid mean temperature similar to 70 degrees C). For receiver facing downward (theta=90 degrees), for head-on wind, total heat loss is approximately the same as that for side-on wind
Comparison of different heating generator systems to reduce energy consumption in social housing in a Mediterranean climate
This study analyses the energy consumption of a social housing built in the 80's. This building typology is deteriorating over time with increased energy consumption for air conditioning and indoor comfort that is well below the standard. This typology is also widely diffused in the city's building stock, especially in its suburbs. Thus, the energy efficiency of public social housing represents a major concern for the Italian national scene, and its improvement represents an effort of critical importance. However, public funding is significantly reduced compared to the past and. In addition, it is often difficult to act on passive systems, such as installing thermal insulation, or replacing terminal units inside apartments. In these cases, as an energy retrofit, it may be appropriate to evaluate the possibility of preserving as much of the existing distribution and supply system as possible, while modifying the thermal energy generation system. In general, where the boiler is not obsolescent, the idea is to propose a hybrid generation system with the inclusion of a heat pump (HHP), which could be implemented with renewable energy equipment, properly installed in the building. The main goal of the present work was to evaluate through dynamic analysis different HVAC scenarios, to assess the optimal configuration of the system for residential use. The results show that a hybrid system can lower the primary energy consumption up to 28%, thus allowing the employment of renewable energies within the social housing building stock
Efficient energy storage in residential buildings integrated with RESHeat system
The Renewable Energy System for Residential Building Heating and Electricity Production (RESHeat) system has been realized for heating and cooling residential buildings. The main components of the RESHeat system are a heat pump, photovoltaic modules, sun-tracking solar collectors and photovoltaic/thermal modules, an under-ground thermal energy storage unit, and a ground heat exchanger. One of the main novelties of the RESHeat system is efficient ground regeneration due to the underground energy storage unit. During a heating season, a large amount of heat is taken from the ground. The underground energy storage unit allows the restoration of ground heating capability and the heat pump's coefficient of performance (COP) to be kept high as possible for consecutive years. The paper presents an energy analysis for a residential building that is a RESHeat system demo site, along with integrating the RESHeat system with the building. The experimentally validated components coupled with the building model to achieve the system performance in TRNSYS software. The results show that the yearly average COP of the heat pump is 4.85 due to the underground energy storage unit. The RESHeat system is able to fully cover the heating demand of the building using renewable energy sources and an efficient underground energy storage system
Numerical investigation of semiempirical relations representing the local Nusselt number magnitude of a pin fin heat sink
Heat transfer augmentation study using air jet
impingement has recently attained great interest
toward electronic packaging systems and material
processing industries. The present study aims at developing
a nondimensional semiempirical relation,
which represents the cooling rate (Nu) in terms of
different geometric and impinging parameters. The
spacing of the fin (S/dp) and the fin heights (H/dp)
are the geometric parameters, while the impinging
Reynolds number (Re) and nozzle‐target spacing
(Z/d) are the impinging parameters. During the plot
of the Nusselt profile, three vital secondary peaks are
observed due to local turbulence of air over the heat
sink. To incorporate this nonlinear behavior of the
Nusselt profile in developing nondimensional empirical relations, the Nusselt profiles are divided into different regions of secondary rise and fall. Four different sets of the semiempirical relation using regression analysis are proposed for Z/d ≤ 6, H/dp ≤ 4.8 with S/dp ≤ 1.58, S/dp > 1.58 and for Z/d > 6, H/dp > 4.8 with S/dp ≤ 1.58, S/dp > 1.58. These empirical relations benefit the evaluation of
the cooling rate (Nu) without any experimentation or
simulation
Effect of mutual radiative exchange between the surfaces of a street canyon on the building thermal energy demand
In this paper, a building energy simulation tool is exploited to study the impact of multiple radiative inter-reflections exchanges in an urban environment. The aim is to evaluate their influence on the thermal energy demand of buildings. A street canyon model validated in a previous work is used in TRNSYS to investigate the effects of the related urban radiative trapping. Due to multiple shortwave and longwave reflections, the actual radiation exchanged by the buildings facades is different if compared to a street canyon building, where only shadowing phenomena due to canyon geometry are considered. Buildings energy simulation commercial codes do not take in account inter-reflections inside urban canyons. The objective of this study is to evaluate how multiple shortwave and longwave reflections affect thermal energy demand (cooling and heating) of a street canyon building depending on its orientation, its transparent/opaque surfaces ratio and on the solar absorption factor of the envelope surfaces. Increases in cooling demand up to 50% and decreases in heating demand up to 20% are found
Experimental and analytical evaluation of a gas-liquid energy storage (GLES) prototype
In this paper, a novel gas-liquid compressed air energy storage prototype, installed in the laboratory of DIAEE Department of Sapienza University of Rome, is studied. Similar to the Compressed-Air Energy Storage (CAES), the Gas-Liquid Energy Storage (GLES) technology is based on gas compression/expansion, where the liquid-piston compression and expansion are utilized. This paper reports on the experimental performance of the first GLES prototype and presents the results from a validated mathematical model. The results show that the proposed system has a high energy efficiency (indicated) over 90%, and then to achieve high values of round trip efficiency (RTE), it is important to improve and optimize the efficiency of the auxiliaries (Motor/Pump and Turbine/Generator). Two different Test, with two different speed of charging phase were done. From the results of the experimental measurements done with the prototype built in the laboratory of the DIAEE Department of Sapienza University of Rome, it can be seen that for slow compression the RTE of the system is around 72%, instead for the fast compression phase, the RTE is around 70%. A mathematical model was implemented and tested with the experimental measurements. From results it can be seen a good agreement between the experimental and numerical analysis, with a maximum error in the Test B (slow compression) equal to 2.5% and 1% respectively for charging and discharging phase. From the parametric analysis it can be seen that only the volume of the tank and the pressure ratio are needed to predict the round trip efficiency of the system.(c) 2021 Published by Elsevier Ltd
Retrofit Analysis of a Historical Building in an Architectural Constrained Area: A Case Study in Rome, Italy
A significant portion of Europe’s historical buildings have significant potential for energy efficiency. Social policy is typically opposed to energy retrofits because it is concerned about damaging historical or cultural sites. Contrarily, there are several approaches to energy efficiency that may be used with historic structures while also retaining the region’s architectural constraints. The findings of this study demonstrate that historical structures, which are typically not targets of energy efficiency technology because of architectural constraints on the building or in the neighbourhood, may also achieve a meaningful decrease in energy usage and GHG emissions. The significant energy-saving capability of this type of building is emphasized in the historical structure taken into consideration. The historical building object of the present study was built in the beginning of the 1900s and it was selected by the Ministry of Culture for energy efficiency improvements
Experimental investigation about the adoption of high reflectance materials on the envelope cladding on a scaled street canyon
In the last years innovative building envelope materials were studied in order to mitigate the urban heat island phenomenon in cities. Among them, cool materials represent a valid solution to achieve this goal. These materials are characterized by high solar reflectance and high thermal emittance. Another way to reduce the urban heat island effect is the adoption of retroreflective materials on the building facades, in order to reduce the amount of solar radiation entrapped within the urban fabric. The retroreflective materials have a particular surface conformation that allows to reflect the solar radiation back in the same direction of the incident radiation. In this case, the temperature of the surfaces inside an urban canyon should have lower values compared with the case with common construction materials. Consequently, also the air temperature inside the urban canyon has low values with significant advantages on outdoor thermal comfort and on building thermal energy demands. In this work the solar reflectance directional dependence was investigated with a Goniophotometer. Furthermore, experimental measurements of retroreflective materials effects on a scaled urban canyon were performed. It was found that the albedo of the RR material increases with the incident angle of the light beam from 38.2% to 42.3% with an angle of 8 degrees and 60 degrees respectively. An increase of the reflected radiation to the sky in the case of the use RR materials despite of a commercial Lambertian paint with same albedo at 8 degrees of incident light beam was evaluated. In particular, the measurement brings to assess a maximum average percentage canyon albedo difference of 2.03%. (C) 2021 Elsevier Ltd. All rights reserved