80 research outputs found

    Ultrastructure expansion microscopy in Trypanosoma brucei.

    Get PDF
    The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM

    Mitochondrial genome maintenance - the kinetoplast story.

    Get PDF
    Mitochondrial DNA replication is an essential process in most eukaryotes. Similar to the diversity in mitochondrial genome size and organization in the different eukaryotic supergroups, there is considerable diversity in the replication process of the mitochondrial DNA. In this review, we summarize the current knowledge of mitochondrial DNA replication and the associated factors in trypanosomes with a focus on Trypanosoma brucei, and provide a new model of minicircle replication for this protozoan parasite. The model assumes the mitochondrial DNA (kinetoplast DNA, kDNA) of T. brucei to be loosely diploid in nature and the replication of the genome to occur at two replication centers at the opposing ends of the kDNA disc (also known as antipodal sites, APS). The new model is consistent with the localization of most replication factors and in contrast to the current model, it does not require the assumption of an unknown sorting and transport complex moving freshly replicated DNA to the antipodal sites. In combination with the previously proposed sexual stages of the parasite in the insect vector, the new model provides a mechanism for maintenance of the mitochondrial genetic diversity

    Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing

    Get PDF
    Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNAs with their cognate amino acids. They are an essential part of each translation system and in eukaryotes are therefore found in both the cytosol and mitochondria. Thus, eukaryotes either have two distinct genes encoding the cytosolic and mitochondrial isoforms of each of these enzymes or a single gene encoding dually localized products. Trypanosomes require trans-splicing of a cap containing leader sequence onto the 5′-untranslated region of every mRNA. Recently we speculated that alternative trans-splicing could lead to the expression of proteins having amino-termini of different lengths that derive from the same gene. We now demonstrate that alternative trans-splicing, creating a long and a short spliced variant, is the mechanism for dual localization of trypanosomal isoleucyl-tRNA synthetase (IleRS). The protein product of the longer spliced variant possesses an amino-terminal presequence and is found exclusively in mitochondria. In contrast, the shorter spliced variant is translated to a cytosol-specific isoform lacking the presequence. Furthermore, we show that RNA stability is one mechanism determining the differential abundance of the two spliced isoform

    The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei

    Get PDF
    The translationally controlled tumor protein TCTP, is a universally conserved protein that seems to be of essential function in all systems tested so far. TCTP is involved in a multitude of cellular functions including cell cycle control, cell division, apoptosis and many more. The mechanism of how TCTP is involved in most of these functions remains elusive. Here we describe that TCTP is a cytoplasmic protein involved in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei

    Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry

    Get PDF
    Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology

    Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei.

    Get PDF
    Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper

    Single p197 molecules of the mitochondrial genome segregation system of Trypanosoma brucei determine the distance between basal body and outer membrane.

    Get PDF
    The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight

    The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development

    Get PDF
    It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with ∼90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding protein

    The Trypanosoma \u3ci\u3ebrucei\u3c/i\u3e MitoCarta and its regulation and splicing pattern during development

    Get PDF
    It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with ~90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins

    Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei

    Get PDF
    Kinetoplastids are protists defined by one of the most complex mitochondrial genomes in nature, the kinetoplast. In the sleeping sickness parasite Trypanosoma brucei, the kinetoplast is a chain mail-like network of two types of interlocked DNA molecules: a few dozen ∼23-kb maxicircles (homologs of the mitochondrial genome of other eukaryotes) and thousands of ∼1-kb minicircles. Maxicircles encode components of respiratory chain complexes and the mitoribosome. Several maxicircle-encoded mRNAs undergo extensive post-transcriptional RNA editing via addition and deletion of uridines. The process is mediated by hundreds of species of minicircle-encoded guide RNAs (gRNAs), but the precise number of minicircle classes and gRNA genes was unknown. Here we present the first essentially complete assembly and annotation of the kinetoplast genome of T. brucei. We have identified 391 minicircles, encoding not only ∼930 predicted 'canonical' gRNA genes that cover nearly all known editing events (accessible via the web at http://hank.bio.ed.ac.uk), but also ∼370 'non-canonical' gRNA genes of unknown function. Small RNA transcriptome data confirmed expression of the majority of both categories of gRNAs. Finally, we have used our data set to refine definitions for minicircle structure and to explore dynamics of minicircle copy numbers
    • …
    corecore