2,118 research outputs found
Development of a Consensus Statement for the Definition, Diagnosis, and Treatment of Acute Exacerbations of Idiopathic Pulmonary Fibrosis Using the Delphi Technique.
© 2015, The Author(s).Introduction: There is a lack of agreed and established guidelines for the treatment of acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF). This reflects, in part, the limited evidence-base underpinning the management of AE-IPF. In the absence of high-quality evidence, the aim of this research was to develop a clinician-led consensus statement for the definition, diagnosis and treatment of AE-IPF. Methods: A literature review was conducted to obtain published material on the definition and treatment of AE-IPF. The results of this review were circulated to an online panel of clinicians for review. Statements were then shared with ten expert respiratory clinicians who regularly treat patients with IPF. A Delphi technique was then used to develop a consensus statement for the definition, diagnosis and treatment of AE-IPF. During the first round of review, clinicians rated the clarity of each statement, the extent to which the statement should be included and provided comments. In two subsequent rounds of review, clinicians were provided with the group median inclusion rating for each statement, and any revised wording of statements to aid clarity. Clinicians were asked to repeat the clarity and inclusion ratings for the revised statements. Results: The literature review, online panel discussion, and face-to-face meeting generated 65 statements covering the definition, diagnosis, and management of AE-IPF. Following three rounds of blind review, 90% of clinicians agreed 39 final statements. These final statements included a definition of AE-IPF, approach to diagnosis, and treatment options, specifically: supportive measures, use of anti-microbials, immunosuppressants, anti-coagulants, anti-fibrotic therapy, escalation, transplant management, and long-term management including discharge planning. Conclusion: This clinician-led consensus statement establishes the ‘best practice’ for the management and treatment of AE-IPF based on current knowledge, evidence, and available treatments. Funding: Boehringer Ingelheim Ltd., Bracknell, West Berkshire, UK
Symmetry characterization of eigenstates in opal-based photonic crystals
The complete symmetry characterization of eigenstates in bare opal systems is
obtained by means of group theory. This symmetry assignment has allowed us to
identify several bands that cannot couple with an incident external plane wave.
Our prediction is supported by layer-KKR calculations, which are also
performed: the coupling coefficients between bulk modes and externally excited
field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review
EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication
Orthogonal frequency division multiplexing (OFDM) has been considered for
visible light communication (VLC) thanks to its ability to boost data rates as
well as its robustness against frequency-selective fading channels. A major
disadvantage of OFDM is the large dynamic range of its time-domain waveforms,
making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC
biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM
(ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this
paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in
terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and
achievable data rates under both average optical power and dynamic optical
power constraints. EVM is a commonly used metric to characterize distortions.
We will describe an approach to numerically calculate the EVM for DCO-OFDM and
ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing
EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem
as a convex linear optimization problem and obtain an EVM lower bound against
which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the
ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical
power are two main constraints in VLC. We will derive the achievable data rates
under these two constraints for both additive white Gaussian noise (AWGN)
channel and frequency-selective channel. We will compare the performance of
DCO-OFDM and ACO-OFDM under different power constraint scenarios
Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam
We report the observation of an exotic radiation (unconventional
Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical
origin of the exotic radiation is direct excitation of the photonic bands by an
ultra-relativistic electron beam. The spectrum of the exotic radiation follows
photonic bands of a certain parity, in striking contrast to the conventional
Smith-Purcell radiation, which shows solely a linear dispersion. Key
ingredients for the observation are the facts that the electron beam is in an
ultra-relativistic region and that the photonic crystal is finite. The origin
of the radiation was identified by comparison of experimental and theoretical
results.Comment: 4 pages, 5 figure
Probing onset of strong localization and electron-electron interactions with the presence of direct insulator-quantum Hall transition
We have performed low-temperature transport measurements on a disordered
two-dimensional electron system (2DES). Features of the strong localization
leading to the quantum Hall effect are observed after the 2DES undergoes a
direct insulator-quantum Hall transition with increasing the perpendicular
magnetic field. However, such a transition does not correspond to the onset of
strong localization. The temperature dependences of the Hall resistivity and
Hall conductivity reveal the importance of the electron-electron interaction
effects to the observed transition in our study.Comment: 9 pages, 4 figure
Microstructural Evolution in Vanadium during Ion Irradiation at Constant and Varying Temperature
Duality Relation among Periodic Potential Problems in the Lowest Landau Level
Using a momentum representation of a magnetic von Neumann lattice, we study a
two-dimensional electron in a uniform magnetic field and obtain one-particle
spectra of various periodic short-range potential problems in the lowest Landau
level.We find that the energy spectra satisfy a duality relation between a
period of the potential and a magnetic length. The energy spectra consist of
the Hofstadter-type bands and flat bands. We also study the connection between
a periodic short-range potential problem and a tight-binding model.Comment: 6 pages, 3 figures, final version to appear in PR
A model of semimetallic behavior in strongly correlated electron systems
Metals with values of the resistivity and the Hall coefficient much larger
than typical ones, e.g., of sodium, are called semimetals. We suggest a model
for semimetals which takes into account the strong Coulomb repulsion of the
charge carriers, especially important in transition-metal and rare-earth
compounds. For that purpose we extend the Hubbard model by coupling one
additional orbital per site via hybridization to the Hubbard orbitals. We
calculate the spectral function, resistivity and Hall coefficient of the model
using dynamical mean-field theory. Starting from the Mott-insulating state, we
find a transition to a metal with increasing hybridization strength
(``self-doping''). In the metallic regime near the transition line to the
insulator the model shows semimetallic behavior. We compare the calculated
temperature dependence of the resistivity and the Hall coefficient with the one
found experimentally for . The comparison demonstrates that the
anomalies in the transport properties of possibly can be
assigned to Coulomb interaction effects of the charge carriers not captured by
standard band structure calculations.Comment: 9 pages RevTeX with 7 ps figures, accepted by PR
- …
