6 research outputs found

    Co-Localization of the Oncogenic Transcription Factor MYCN and the DNA Methyl Binding Protein MeCP2 at Genomic Sites in Neuroblastoma

    Get PDF
    MYCN is a transcription factor that is expressed during the development of the neural crest and its dysregulation plays a major role in the pathogenesis of pediatric cancers such as neuroblastoma, medulloblastoma and rhabdomyosarcoma. MeCP2 is a CpG methyl binding protein which has been associated with a number of cancers and developmental disorders, particularly Rett syndrome.Using an integrative global genomics approach involving chromatin immunoprecipitation applied to microarrays, we have determined that MYCN and MeCP2 co-localize to gene promoter regions, as well as inter/intragenic sites, within the neuroblastoma genome (MYCN amplified Kelly cells) at high frequency (70.2% of MYCN sites were also positive for MeCP2). Intriguingly, the frequency of co-localization was significantly less at promoter regions exhibiting substantial hypermethylation (8.7%), as determined by methylated DNA immunoprecipitation (MeDIP) applied to the same microarrays. Co-immunoprecipitation of MYCN using an anti-MeCP2 antibody indicated that a MYCN/MeCP2 interaction occurs at protein level. mRNA expression profiling revealed that the median expression of genes with promoters bound by MYCN was significantly higher than for genes bound by MeCP2, and that genes bound by both proteins had intermediate expression. Pathway analysis was carried out for genes bound by MYCN, MeCP2 or MYCN/MeCP2, revealing higher order functions.Our results indicate that MYCN and MeCP2 protein interact and co-localize to similar genomic sites at very high frequency, and that the patterns of binding of these proteins can be associated with significant differences in transcriptional activity. Although it is not yet known if this interaction contributes to neuroblastoma disease pathogenesis, it is intriguing that the interaction occurs at the promoter regions of several genes important for the development of neuroblastoma, including ALK, AURKA and BDNF

    The Spin Move: A Reliable and Cost-Effective Gowning Technique for the 21st Century

    No full text
    Operating room efficiency (ORE) and utilization are considered one of the most crucial components of quality improvement in every hospital. We introduced a new gowning technique that could optimize ORE. The Spin Move quickly and efficiently wraps a surgical gown around the surgeon's body. This saves the operative time expended through the traditional gowning techniques. In the Spin Move, while the surgeon is approaching the scrub nurse, he or she uses the left heel as the fulcrum. The torque, which is generated by twisting the right leg around the left leg, helps the surgeon to close the gown as quickly and safely as possible. From 2003 to 2012, the Spin Move was performed in 1,725 consecutive procedures with no complication. The estimated average time was 5.3 and 7.8 seconds for the Spin Move and traditional gowning, respectively. The estimated time saving for the senior author during this period was 71.875 minutes. Approximately 20,000 orthopaedic surgeons practice in the United States. If this technique had been used, 23,958 hours could have been saved. The money saving could have been 14,374,800.00(23,958hours ×14,374,800.00 (23,958 hours × 600/operating room hour) during the past 10 years. The Spin Move is easy to perform and reproducible. It saves operating room time and increases ORE

    Iontophoretic administration of dexamethasone sodium phosphate for acte epicondylitis : a randomized, double-blinded, placebo-controlled study

    Get PDF
    Contains fulltext : 148932.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 22 december 2015Promotores : Sauerwein, R.W., Visser, L.G. Co-promotor : Scholzen, A
    corecore