43 research outputs found

    A focus on fouling of nanofiltration membranes in the treatment of two-phase olive mill wastewater by boundary flux and pore blocking theories

    Get PDF
    The implementation of membranes in water and wastewater treatment processes has significantly increased in the last decades. However, membrane fouling leads to increased expenses if not properly examined and considered, and this is especially problematic in wastewater treatments. For this reason, fouling minimization represents the key factor to make those processes feasible. The use of NF membranes is especially problematic regarding fouling problems. In first place, adequate fouling inhibition methods should be designed upstream the membrane operation, in order to make the downstream membrane processes for wastewater treatment technically and economically feasible. In the present work, fouling build-up on a nanofiltration (NF) membrane during the treatment of olive mill wastewater coming from Spain (OMW-S) is addressed by the boundary flux theory, and the results were compared and complemented by using the pore blocking models. Fouling mechanisms are important to fully understand what is happening between the membrane and the effluent, to take the adequate decisions with respect to the design of the membrane plant and set-up of optimized operating conditions. The goal is to operate membranes modules by avoiding irreversible fouling for a long period of time, that is, several years of service lifetime. Thereafter, the operating parameters should be carefully chosen to avoid working beyond the conditions that the selected membrane can stand for the specific feedstream. The followed strategy allows the operation of the membranes system in a controlled framework that permits the stable operation of the plant. Moreover, the required membrane area is minimized and the constancy of the permeate productivity is also narrowed by following the proposed methodology

    Analysis of fouling resistances under dynamic filtration of pretreated olive mill wastewater on a loose reverse osmosis membrane

    Get PDF
    In this work, a loose reverse osmosis (RO) membrane (Osmonics AK model), capable of offering beforehand higher fluxes under lower operating pressure than typical tight reverse osmosis membranes but still offering similar rejection, was used for the final purification of olive mill wastewater. However, the output that a membrane may offer when it is virgin and readily used will change in time due to membrane fouling. If not properly considered, the advantages that a chosen membrane may offer in contrast with others would quickly and often irreversibly vanish, with the consequences in terms of capital expenses that this will represent. One approach to meet the investor's needs to trust membrane technology is to guarantee that fouling will be inhibited as much as possible, but to overcome the loss of performance that fouling carries engineers overdesign the membrane plants by using too wide safety margins that trigger the costs sensibly. Since the mechanisms by which fouling phenomena are triggered are always complex, the osmotic-pressure resistances-in-series model can be a simple but reliable model to describe the membrane response and predict its performance in time. In this context, the normalized fouling measured on the examined RO membrane was found to be minimum in the operating pressure range between 5 and 8 bar (0.65-0.98, respectively), and it decreased down to 0.51 upon increasing the crossflow up to 5.09 m s-1, avoiding irreversible fouling. Moreover, significantly minor fouling (0.33) was attained at the lowest temperature, regularly experienced during the olive oil production campaign. On another hand, the rejection towards organic solutes was maintained above 97%

    Study on fouling behaviour of ultrafiltration and nanofiltration during purification of different organic matter polluted wastewaters

    Get PDF
    The boundary flux concept is a profitable tool to analyse fouling issues in membrane processes. The boundary flux value separates an operating region characterized by reversible fouling formation from irreversible one. Boundary flux values are not constant, but function of time, as calculated by the sub-boundary fouling rate value. The knowledge of both parameters may fully describe the membrane performances in sub-boundary operating regimes. Many times, for wastewater purification purposes, ultrafiltration and nanofiltration membranes are employed to treat different wastewater streams. This appears to be feasible from both technical and economical point of view many times. Whereas initial productivity and selectivity to reach the desired purification targets are generally guaranteed, key to reach process feasibility is that the membrane must resist to fouling issues, with a limited reduction of the performances as a function of time. In other words, longevity of the membranes must be that high to minimise their substitution and, consequently, operating (consumable) costs for the replacement. In this work, after a brief introduction to the boundary flux concept, for many different wastewater, the boundary flux and sub-boundary fouling rate values of different microfiltration and ultrafiltration membranes will be discussed and compared. By this approach, it will be possible to separate those systems where the use membranes for their treatment results successfully from those that represent a challenge (from a technical and/or economic point of view). This will depend sensibly of the feedstock characteristics and, in detail, on the particle size of the suspended matter and guidelines for process designers will be discussed. In most cases, it will be shown that membranes appear to perform very well, making this technology very interesting for many case studies

    About merging threshold and critical fux concepts into a single one: the boundary flux

    Get PDF
    In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes

    On the Purification of Agro-Industrial Wastewater by Membrane Technologies: The Case of Olive Mill Effluents

    Get PDF
    The olive oil production is one of the main industrial activities in the Mediterranean Basin: Italy, Portugal, Greece, and Northern African countries—Syria, Algeria, Turkey, Morocco, Tunisia, Libya, Lebanon, and Egypt. Also, France, Serbia and Montenegro, Macedonia, Cyprus, Turkey, Israel, and Jordan produce a considerable annual yield. Moreover, it is an emergent agro-food industry in China, the USA, Australia, the Middle East, and China, which is expected to develop a considerable production potential. Hence, the treatment of olive mill effluents is a task of global concern. In this context, advanced separation technologies comprising membranes and adsorption resins have been a breakthrough in terms of advanced separation and purification technologies, but many aspects are still in development or under investigation. In this chapter, a focus on the use of membrane and ion adsorption technologies for the purification of these wastewaters will be given. The effect of different factors comprising the type of membrane, i.e., ultrafiltration, nanofiltration, and reverse osmosis; the type of adsorbent (waste material, resins); and the operating conditions will be addressed. Conventional treatments are not able to abate the high concentration of dissolved species present in these effluents. The use of these technologies can be a feasible solution if properly engineered

    Optimized design of wastewater stream treatment processes by membrane technologies

    Get PDF
    Wastewater treatment by membrane technologies is gaining more and more importance and the relevant market is increasing. This trend is mainly justified by novel and high-performance membrane materials, a wider number of successful applications by membrane technologies and the progressive reduction of the investment and operating costs. The main drawback of membrane technology is membrane fouling, that reduces the membrane performances along the time and leads to a premature substitution of the membrane modules. In the last years, a better understanding of the fouling phenomena has sensibly increased the confidence in this technology. This is especially true for wastewater treatment processes based on membranes. In this case low operating costs are mandatory, thus the membrane modules should not be frequently replaced. This work briefly covers the theory and measurement procedures of the critical, threshold and boundary flux, with the aim of process optimization and control design. The goal is to operate membranes modules by avoiding irreversible fouling for a long period of time (several years). The importance of specific pretreatment processes, such as flocculation and photocatalysis, adopted to reduce fouling phenomena will be also discussed. Moreover, the design of advanced control systems for batch membrane and some examples of wastewater treatment (olive mill wastewater and the effluents from the tannery industry) will be reported

    Comparison of the performance of two reverse osmosis membranes for the final purification of olive mill wastewater

    Get PDF
    Two quite different reverse osmosis (RO) polymeric membranes were examined for the final purification of olive mill wastewater from two-phase olive mills (OMW2): the first one is a thin-film composite (TFC) membrane consisting of polyamide active layer on polysulfone ultrafiltration support, whereas the other one is a low-pressure membrane made of asymmetric polyamide. A net operating pressure (PTM) of 25 bar was found as the target for the TFC membrane, whereas for the asymmetric one a PTM of 8 bar was chosen, given that similar flux decay but still significant productivity was observed by increasing the PTM for this membrane. These results are confirmed by the fouling index (b) values calculated for each membrane. Complete removal of suspended solids, phenolic compounds and iron was achieved by both membranes. Otherwise, the asymmetric membrane ensured slightly higher organic matter (COD) and electroconductivity (EC) reduction, leading to a COD concentration in the permeate stream equal to 3.7 mg L-1 and 1.4 mg L-1 (TFC vs. asymmetric), whereas the EC values were 97.0 and 31.0 Όs cm-1, respectively. This would permit reusing the purified effluent provided by both membranes in the production process and close the loop at industrial scale. Moreover, the asymmetric membrane provides a steady-state flux value of the same order of that yielded by the TFC membrane upon more than three times less PTM (14.9 L h-1m-2 at PTM = 8 bar vs. 15.2 L h-1m-2 at PTM = 25 bar), implying a reduction of the specific energy consumption above 50 %, from 0.30 ? m-3 for the TFC membrane to 0.14? m-3 for the asymmetric one. Copyright © 2015, AIDIC Servizi S.r.l

    Analysis of the Flux Performance of Different RO/NF Membranes in the Treatment of Agroindustrial Wastewater by Means of the Boundary Flux Theory

    Get PDF
    Dynamic membrane system behaviour must be adequately addressed to avoid process unfeasibility. The lack of proper analysis will mean relying on erroneous permeate flux values in the system design, which will lead to quick and/or steady high fouling rates. In this paper, the authors present additional data supporting the boundary flux theory as a helpful tool for membrane engineers to carefully avoid process failures. By fitting the dynamic permeate flux data to the boundary flux model, it was possible to calculate the fouling index for the three selected membranes (one nanofiltration (NF) and two reverse osmosis (RO) ones). The dynamic flux given by the low-pressure RO membrane did not follow sub-boundary operating conditions, since a sharp flux loss was measured throughout the whole operating cycle, pinpointing that supra-boundary flux conditions were governing the system. This was supported by the calculated value of the fouling parameter, which resulted to be in the order of ten times higher for this membrane. However, the values of !0 for the SC-RO and DK-NF ones, supported by the very low value of the sub-boundary fouling parameter α (0.002 and 0.007 L.h-1.m-2.bar-2, respectively), ensure nearly boundary operating conditions for these membranes.The Spanish Ministry of Economy and Competitiveness is acknowledged for having funded the project CTM2014-61105-JIN: “Design and development of an integral process for revalorization and treatment of the effluents from olive oil industry”

    The boundary flux. New perspectives for membrane process design

    Get PDF
    In the last decades much effort was put in understanding fouling phenomena on membranes. Many new concepts have been introduced in time, and parallel to this many parameters capable to quantify fouling issues and fouling evolution. One successful approach was the introduction of the critical flux theory. At first validated for microfiltration, the theory applied to ultrafiltration and nanofiltration, too. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. Nevertheless, the application to the concept remains very limited: in many cases, in particular on systems where fouling is a main issue, critical fluxes were found to be very low, lower than economical feasibility permits to make membrane technology advantageous. Despite these arguments, the knowledge of the critical flux value still remains and must be considered as a good starting point for process design concerning productivity and longevity. In 2011, a new concept was introduced, that is the threshold flux. In this case, the concept evaluates the maximum permeate flow rate characterized by a low constant rate fouling regime, due to formation of a secondary, selective layer of foulant on the membrane surface. This concept, more than the critical flux, may be a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. In fact, critical and threshold flux concepts share many common aspects which merge perfectly into a new concept that is the boundary flux. The validation will occur mainly by the analysis of previous collected data by the authors, during the treatment of olive mill wastewater. A novel membrane process design method based on the boundary flux will then be presented

    On The Relationship between Suspended Solids of Different Size, the Observed Boundary Flux and Rejection Values for Membranes Treating a Civil Wastewater Stream

    Get PDF
    Membrane fouling is one of the main issues in membrane processes, leading to a progressive decrease of permeability. High fouling rates strongly reduce the productivity of the membrane plant, and negatively affect the surviving rate of the membrane modules, especially when real wastewater is treated. On the other hand, since selectivity must meet certain target requirements, fouling may lead to unexpected selectivity improvements due to the formation of an additional superficial layer formed of foulants and that act like a selective secondary membrane layer. In this case, a certain amount of fouling may be profitable to the point where selectivity targets were reached and productivity is not significantly affected. In this work, the secondary clarifier of a step sludge recirculation bioreactor treating municipal wastewater was replaced by a membrane unit, aiming at recovering return sludge and producing purified water. Fouling issues of such a system were checked by boundary flux measurements. A simple model for the description of the observed productivity and selectivity values as a function of membrane fouling is proposed
    corecore