152 research outputs found

    Resonant gratings with an etch-stop layer and a fabrication-error tolerant design

    Get PDF
    Sub-wavelength gratings (SWG) have shown much promise for applications such as lightweight high bandwidth reflectors, polarising filters and focusing lenses. Unfortunately, grating performance may be rapidly degraded through variability in grating dimensions. We demonstrate, in particular, how an error in depth of etch can be detrimental to the performance of zero contrast grating reflectors. We mitigate the impact of this fabrication error through the introduction of an etch stop layer and in so doing we experimentally realise a high bandwidth reflector based on this modified structure. Another common fabrication error is variation in the duty-cycle of fabricated gratings. This duty-cycle variation can weaken grating performance, however we demonstrate that grating designs that exhibit tolerance to duty-cycle fluctuation can be identified through simulation. Finally, we discuss the impact of lateral etching and the resulting sidewall concavity. We present our approach for numerically predicting the spectral response from such a grating and also for convenience we outline an approach for quickly approximating grating performance. Good agreement is observed between these numerical predictions and measurements made on a HCG with concave sidewalls. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Reconciliation, resilience and resistance in Inuit teacherā€™s professional development and practices

    Get PDF
    Acknowledgements We are extremely grateful to the Inuit teachers and long-term northern educators from all Inuit regions who were able to participate, and for the community of Nain, Nunatsiavut for hosting the Forum. We want to highlight the support of ArcticNet, the Nunatsiavut Ministry of Education and Economic development, ITK and the SSHRC for their financial and in-kind support in the form of time and resources. We also thank Shanti Subedar (student at the University of Winnipeg) who transcribed Forum recordings.Peer reviewedPublisher PD

    651. Oligonucleotide-Mediated Gene Repair Restores Full Length SMN mRNA Expression in Mutant-SMN Murine Fibroblasts

    Get PDF
    Spinal Muscular Atrophy (SMA) is a severe neuromuscular disease characterized by degeneration of a-motor neurons in the spinal cord. Ninety percent of patients affected by SMA have deletion of the Survival of Motor Neuron-1 (SMN1) but they retain a copy of the gene (SMN2) in their genome. SMN2 produces almost no functional SMN protein due to a CAET transition in exon 7 that disrupts a splicing enhancer sequence and causes skipping of exon 7 in >90% of the processed SMN mRNA. As a consequence, SMA cells have a decreased amount of properly spliced full length SMN mRNA, which encodes functional SMN protein. This decrease in functional SMN protein leads to decreased survival of motor neurons. Many attempts have been made to increase functional SMN protein levels from the SMN2 gene by correcting the splicing-process defect

    Heterogeneously grown tunable group-IV laser on silicon

    Get PDF
    Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 Ī¼m to 2.1 Ī¼m. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Ī“ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si

    Optical emission of strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers

    Get PDF
    We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge

    Optical properties of hybrid quantum dot/quantum well active region based on GaAs system

    Get PDF
    We experimentally investigate the optical properties of a novel hybrid material/structure consisting of a GaInNAs quantum well and stacked InAs/InGaAs quantum dot layers on GaAs substrate. We demonstrate that the strong quantum confined Stark effect within the quantum well can effectively control well-dot detuning when reverse bias voltage is applied. With a combination of low-and room-temperature time resolved luminescence spectra we infer device absorption recovery time under 30 ps. These properties could be utilized in high-speed optoelectronics devices, in particular electro-absorption modulated lasers and reconfigurable multisection devices, where the hybrid quantum dots - quantum well material system could offer easily and rapidly interchangeable function, i.e., emission gain or variable attenuation, of each section depending on the external bias. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752279

    Coulomb effect inhibiting spontaneous emission in charged quantum dot

    Get PDF
    We investigate the emission dynamics of InAs/GaAs quantum dots (QDs) coupled to an InGaAs quantum well in a tunnel injection scheme by means of time-resolved photoluminescence. Under high-power excitation we observe a redshift in the QD emission of the order of 20 meV. The optical transition intensity shows a complex evolution, where an initial plateau phase is followed by an increase in intensity before a single-exponential decay. We attribute this behavior to the Coulomb interactions between the carriers in a charged QD and corroborate the experimental results with both a rate equation model and self-consistent eight-band k.p calculations. (C) 2010 American Institute of Physics. (doi:10.1063/1.3484143

    Improved room-temperature luminescence of core-shell InGaAs/GaAs nanopillars via lattice-matched passivation

    Get PDF
    Optical properties of GaAs/InGaAs/GaAs nanopillars (NPs) grown on GaAs (111)B were investigated. Employment of a mask-etching technique allowed for an accurate control over the geometry of NP arrays in terms of both their diameter and separation. This work describes both the steady-state and time-resolved photoluminescence of these structures as a function of the ensemble geometry, composition of the insert, and various shell compounds. The effects of the NP geometry on a parasitic radiative recombination channel, originating from an overgrown lateral sidewall layer, are discussed. Optical characterization reveals a profound influence of the core-shell lattice mismatch on the carrier lifetime and emission quenching at room temperature. When the latticematching conditions are satisfied, an efficient emission from the NP arrays at room temperature and below the band-gap of silicon is observed, clearly highlighting their potential application as emitters in optical interconnects integrated with silicon platforms

    Influence of pH adjustment on physicochemical properties of microfiltration retentates of skim milk and rehydration properties of resulting powders

    Get PDF
    Effects of pH adjustment on physicochemical properties of microfiltration retentates of skim milk and rehydration of resulting micellar casein concentrate (MCC) powders were investigated. Aliquots of retentate (pH 6.9) were adjusted to pH 7.3, 7.6 or 7.6 followed by readjustment to pH 6.9 (6.9R) prior to powder preparation. The retentates with pH 6.9, 7.3, and 7.6 had casein micelle size of 179, 189 and 197 nm, respectively, while sample 6.9R had size of 183 nm, similar to retentate at pH 6.9. Higher retentate pH resulted in lower ionic calcium and higher conductivity, with sample 6.9R having higher values for both parameters than the pH 6.9 sample. The MCC powders displayed poorer wettability and enhanced dispersibility with increasing retentate pH. Interestingly, the 6.9R powder had the best wettability and dispersibility. This study demonstrated that pH-mediated modifications of the physicochemical properties of retentates improve the rehydration properties of resultant MCC powders
    • ā€¦
    corecore