31 research outputs found

    Numerical modelling of radiant energy extinction by water medium containing bubbles and particles of various natures

    Get PDF
    In the framework of the Mie theory, we developed a numerical model of weakly absorbing medium, containing particles having an arbitrary chemical composition. This model can be applied to the study of the extinction characteristics of the optical radiation by a water layer with gas bubbles or volume-shape particles. The results of the numerical experiment illustrate changes in optical properties of the water due to the presence of bubbles or solid particles. The work displays some calculations of the extinction efficiency factor, the extinction coefficient, and transmission function at visible wavelengths. The influences of concentration and sizes of gas bubbles on the extinction characteristics of optical radiation are illustrated. Features of the extinction of radiant energy are discussed as dependent on a size parameter and a complex index of refraction of scatterers

    Heavy mineral composition of bottom sediments from the South China Sea

    No full text
    This paper presents results of investigations of unusual carbonate formations found in bottom sediments of the South China Sea shelf. These sediments were sampled from a deep fracture found by geophysical methods. According to gas-geochemical data there are high concentrations of methane, hydrogen and carbon dioxide in bottom waters of this area. The carbonate formations were defined as calcium siderite or siderodot by roentgenostructural, microprobe, atomic absorption, and thermal analyses, asawellas infrared spectroscopy. Formation of this mineral results from carbon dioxide and methane flows through bottom sediments

    Seismic facies and specific character of the bottom simulating reflector on the western margin of Paramushir Island, Sea of Okhotsk

    No full text
    Seismic profiles from a venting area on the western margin of Paramushir Island (Sea of Okhotsk) reveal a local complex structure and an interesting, unusual pattern of the bottom simulating reflector (BSR). The BSR is gradual rising towards the venting area. The geothermal gradient and the bottom temperature confirmed the methane hydrate. The temperature appears to be the most important factor controlling the hydrate stability. A locally higher heat flow caused the upward migration of the hydrate stability field and the subsequent degradation of the hydrated sediments, causing gas vent formation and the flux of methane gas into the water column
    corecore