145 research outputs found

    Broadband Characterization of Dielectric Films for Power-Ground Decoupling

    Get PDF
    Abstract -We evaluated the dielectric permittivity and impedance characteristics of high dielectric constant polymer composite films. Such materials are being investigated by the electronic industry in response to the growing need for efficient integrated power-ground de-coupling capacitance in microwave circuits and fast switching devices. In order to extend the dielectric measurements to the microwave range, we developed an appropriate expression for the input admittance of a thin film capacitance terminating a coaxial line. T he theoretical model treats the capacitance as a distributed network and takes into consideration the wave propagation in the specimen section. The dielectric permittivity of several high dielectric constant materials for de-coupling capacitance applications was evaluated at frequencies of 100 MHz to 10 GHz, and the corresponding impedance characteristics were determined directly in time domain. Polymer resins filled with ferroelectric ceramics showed low impedance values and flat impedance characteristics over a broad frequency range, which makes these materials attractive for power-ground decoupling applications in high-speed electronic circuits

    Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    Get PDF
    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production

    The differences in RCAS1 and DFF45 endometrial expression between late proliferative, early secretory, and mid-secretory cycle phases.

    Get PDF
    RCAS1 expression is related to the regulation of activated immune cells and to connective tissue remodeling within the endometrium. DFF45 seems to play an important role in the apoptotic process, most likely by acting through the regulation of DNA fragmentation. Its expression changes within the endometrium seem to be related to the resistance of endometrial cells to apoptosis. The aim of the present study was to evaluate RCAS1 and DFF45 endometrial expressions during ovulation and the implantation period. RCAS1 and DFF45 expression was assessed by the Western-blot method in endometrial tissue samples obtained from 20 patients. The tissue samples were classified according to the menstrual cycle phases in which they were collected, with a division into three phases: late proliferative, early secretory, and mid-secretory. The lowest level of RCAS1 and the highest level of DFF45 endometrial expression was found during the early secretory cycle phase. Statistically significantly higher RCAS1 and statistically significantly lower DFF45 endometrial expression was identified in the endometrium during the late proliferative as compared to the early secretory cycle phase. Moreover, statistically significantly higher RCAS1 and statistically significantly lower DFF45 expression was found in the endometrium during the mid-secretory as compared to the early secretory cycle phase. The preparation for implantation process in the endometrium is preceded by dynamic changes in endometrial ECM and results from the proper interaction between endometrial and immune cells. The course of this process is conditioned by the immunomodulating activity of endometrial cells and their resistance to immune-mediated apoptosis. These dynamic changes are closely related to RCAS1 and DFF45 expression alterations

    Carbon nanotube-rich domain effects on bulk electrical properties of nanocomposites

    Get PDF
    Carbon nanotube (CNT)/epoxy composites are intriguing materials that enable materials scientists and engineers to tailor structural and electrical properties for applications in the automotive and aerospace industries. Recent insights into CNT-rich domain formation and its influence on electrical properties raise questions about which processing variables can be used to tune the overall electrical conductivity. Here, we investigate how mass fraction and curing temperature influence these electrical properties. CNT nanocomposites were fabricated varying the mass fraction of CNT and the epoxy curing temperature. First, scanning lithium ion microscopy coupled with transmission electron microscopy were employed to investigate the morphology of CNT-rich domains that formed more readily at elevated curing temperatures than during room temperature curing. Then, oscillatory shear rheology measurements of the unfilled curing epoxy informed a simple kinetic argument to explain the CNT-rich domain formation. Finally, the electrical conductivity (both alternating and direct current) was characterized with a novel microwave cavity perturbation spectroscopy technique (alternating current conductivity) and a standard four-point probe station (direct current conductivity). The overarching conclusion of the work was that the CNT-rich domains formed a secondary percolated network surrounded by an almost completely unfilled epoxy matrix that allowed for higher conductivities at lower loadings. This work demonstrates that perfect dispersion of the nanoparticulate is, at least in this instance, not necessarily the preferred morphology

    Epidemiology and Treatment Guidelines of Negative Symptoms in Schizo-phrenia in Central and Eastern Europe: A Literature Review

    Get PDF
    AIM: To gather and review data describing the epidemiology of schizophrenia and clinical guidelines for schizophrenia therapy in seven Central and Eastern European countries, with a focus on negative symptoms. Methods : A literature search was conducted which included publications from 1995 to 2012 that were indexed in key databases. Results : Reports of mean annual incidence of schizophrenia varied greatly, from 0.04 to 0.58 per 1,000 population. Lifetime prevalence varied from 0.4% to 1.4%. One study reported that at least one negative symptom was present in 57.6% of patients with schizophrenia and in 50-90% of individuals experiencing their first episode of schizophrenia. Primary negative symptoms were observed in 10-30% of patients. Mortality in patients with schizophrenia was greater than in the general population, with a standardized mortality ratio of 2.58-4.30. Reasons for higher risk of mortality in the schizophrenia population included increased suicide risk, effect of schizophrenia on lifestyle and environment, and presence of comorbidities. Clinical guidelines overall supported the use of second-generation antipsychotics in managing negative symptoms of schizophrenia, although improved therapeutic approaches are needed. Conclusion : Schizophrenia is one of the most common mental illnesses and poses a considerable burden on patients and healthcare resources alike. Negative symptoms are present in many patients and there is an unmet need to improve treatment offerings for negative symptoms beyond the use of second-generation antipsychotics and overall patient outcomes

    Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy

    Get PDF
    Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT

    Imaging and Modeling of Myocardial Metabolism

    Get PDF
    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed

    Generalization of auditory sensory and cognitive learning in typically developing children

    Get PDF
    Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills
    corecore