414 research outputs found

    Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF

    Get PDF
    The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths

    Advanced oxygen-hydrocarbon rocket engine study

    Get PDF
    Preliminary identification and evaluation of promising liquid oxygen/ hydrocarbon (LO2/HC) rocket engine cycles is reported. A consistent and reliable data base for vehicle optimization and design studies, to demonstrate the significance of propulsion system improvements, and to select the critical technology areas necessary to realize such advances is presented

    Note on the Electron Energy Spectrum in the Inner Van Allen Belt

    Get PDF
    Electron energy spectrum in the inner van allen bel

    Measurement of the nighttime infrared luminosity of Spacelab 1 in the H- and K-bands

    Get PDF
    Infrared measurements of the Spacelab 1, Space Transportation System 9, were made from the Maui Optical Station tracking facility using a sensitive photometer n two infrared bands, the H-band centered at a wavelength of 1.6 microns and the K-band centered at 2.3 micrometers. The objective was to measure radiation from the vicinity of the Shuttle arising from interaction of Shuttle surfaces with atmospheric particles. It was necessary to include the Shuttle itself in the field of view of the photometer. The integrated brightness of the entire Shuttle at a distance of 400 km was found to be equivalent to that of a star of magnitude +6.6 or 1.6 microns; it was much fainter in the visible. Most of the emission at 1.6 microns appears to be attributable to the Shuttle glow phenomenon. It is hundreds of times brighter than the zodiacal background. The radiation at 2.3 microns can be accounted for primarily by diffusely scattered thermal radiation from Earth's surface

    Tension fatigue analysis and life prediction for composite laminates

    Get PDF
    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth

    Geomagnetically Trapped Radiation Produced by a High-Altitude Nuclear Explosion on July 9, 1962

    Get PDF
    Geomagnetically trapped radiation produced by a high altitude nuclear explosio

    Variable mixture ratio performance through nitrogen augmentation

    Get PDF
    High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine

    Microlaminate composites: An alternate approach to thermal barrier coatings

    Get PDF
    Ceramic thermal barrier coatings suffer from a major drawback, i.e., brittle behavior. An alternate approach is microlaminate composite coatings consisting of alternate layers of metal and oxide. As the thickness of the individual laminae decrease while keeping the total thickness of the coating constant, the thermal conductivity drops markedly. Data on the Fe-Cu system will be presented. A model is proposed for an MCrAlY-Al2O3 microlaminate coating for thermal barriers. The methods of fabrication will also be discussed

    Unconventional nozzle tradeoff study

    Get PDF
    Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions
    corecore