448 research outputs found

    100 deg2^2 Mock Galaxy Cone for HI Surveys with the Early SKA

    Full text link
    We distribute an easy-to-use mock catalog of galaxies with detailed neutral atomic hydrogen (HI) and auxiliary molecular and optical properties. The catalog covers a field of 10-by-10 degrees and a redshift range of z=0-1.2. It contains galaxies with 21cm peak flux densities down to 1uJy and is, within this flux limit, complete for HI masses above 10^8 solar masses. Five random realisations of the catalog in ASCII format (~4GB/file) and subtables with HI flux limits of 10u Jy (~500MB/file) and 100uJy$ (~30MB/file) can be downloaded at http://ict.icrar.org/store/staff/do/s3sax.Comment: 3 pages, 1 table, 2 figure

    The Cosmic Decline in the H2/HI-Ratio in Galaxies

    Full text link
    We use a pressure-based model for splitting cold hydrogen into its atomic (HI) and molecular (H2)components to tackle the co-evolution of HI, H2, and star formation rates (SFR) in ~3e7 simulated galaxies in the Millennium simulation. The main prediction is that galaxies contained similar amounts of HI at redshift z=1-5 than today, but substantially more H2, in quantitative agreement with the strong molecular line emission already detected in a few high redshift galaxies and approximately consistent with inferences from studies of the damped Lyman-alpha absorbers seen in the spectra of quasars. The cosmic H2/HI-ratio is predicted to evolve monotonically as Omega(H2)/Omega(HI) (1+z)^1.6. This decline of the H2/HI-ratio as a function of cosmic time is driven by the growth of galactic disks and the progressive reduction of the mean cold gas pressure. Finally, a comparison between the evolutions of HI, H2, and SFRs reveals two distinct cosmic epochs of star formation: an early epoch (z>3), driven by the evolution of Omega(HI+H2), and a late epoch (z<3), driven by the evolution of Omega(H2)/Omega(HI).Comment: 4 pages, 3 figure

    Rebounds of deformed cavitation bubbles

    Full text link
    Presented here are experiments clarifying how the deformation of cavitation bubbles affects their rebound. Rebound bubbles carry the remaining energy of a bubble following its initial collapse, which dissipates energy mainly through shock waves, jets, and heat. The rebound bubble undergoes its own collapse, generating such violent events anew, which can be even more damaging or effective than at first bubble collapse. However, modeling rebound bubbles is an ongoing challenge because of the lack of knowledge on the exact factors affecting their formation. Here we use single-laser-induced cavitation bubbles and deform them by variable gravity or by a neighboring free surface to quantify the effect of bubble deformation on the rebound bubbles. Within a wide range of deformations, the energy of the rebound bubble follows a logarithmic increase with the bubble's initial dipole deformation, regardless of the origin of this deformation

    Evolution of the Milky Way in Semi-Analytic Models: Detecting Cold Gas at z=3 with ALMA and SKA

    Full text link
    We forecast the abilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Square Kilometer Array (SKA) to detect CO and HI emission lines in galaxies at redshift z=3. A particular focus is set on Milky Way (MW) progenitors at z=3 for their detection within 24 h constitutes a key science goal of ALMA. The analysis relies on a semi-analytic model, which permits the construction of a MW progenitor sample by backtracking the cosmic history of all simulated present-day galaxies similar to the real MW. Results: (i) ALMA can best observe a MW at z=3 by looking at CO(3-2) emission. The probability of detecting a random model MW at 3-sigma in 24 h using 75 km/s channels is roughly 50%, and these odds can be increased by co-adding the CO(3-2) and CO(4-3) lines. These lines fall into ALMA band 3, which therefore represents the optimal choice towards MW detections at z=3. (ii) Higher CO transitions contained in the ALMA bands geq6 will be invisible, unless the considered MW progenitor coincidentally hosts a major starburst or an active black hole. (iii) The high-frequency array of SKA, fitted with 28.8 GHz receivers, would be a powerful instrument for observing CO(1-0) at z=3, able to detect nearly all simulated MWs in 24 h. (iv) HI detections in MWs at z=3 using the low-frequency array of SKA will be impossible in any reasonable observing time. (v) SKA will nonetheless be a supreme ha survey instrument through its enormous instantaneous field-of-view (FoV). A one year pointed HI survey with an assumed FoV of 410 sqdeg would reveal at least 10^5 galaxies at z=2.95-3.05. (vi) If the positions and redshifts of those galaxies are known from an optical/infrared spectroscopic survey, stacking allows the detection of HI at z=3 in less than 24 h.Comment: 14 pages, 5 figures, 5 table

    A Virtual Sky with Extragalactic HI and CO Lines for the SKA and ALMA

    Get PDF
    We present a sky simulation of the atomic HI emission line and the first ten CO rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500/h Mpc, hence the actual field-of-view depends on the (user-defined) maximal redshift zmax; e.g. for zmax=10, the field of view yields ~4x4 sqdeg. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the HI and CO emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 10^8 Msun. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Lambda-cold dark matter (LCDM) cosmology. The evolving CDM-distribution was adopted from the Millennium Simulation, an N-body CDM-simulation in a cubic box with a side length of 500/h Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations (BAOs) in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such the SKA, the LMT, and ALMA. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz-analyzes for peak flux density limited and total flux limited surveys of HI and CO. A key prediction is that HI will be harder to detect at redshifts z>2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models.Comment: 16 pages, 9 figures, 1 tabl

    Gravitationally Lensed HI with MeerKAT

    Full text link
    The SKA era is set to revolutionize our understanding of neutral hydrogen (HI) in individual galaxies out to redshifts of z~0.8; and in the z > 6 intergalactic medium through the detection and imaging of cosmic reionization. Direct HI number density constraints will, nonetheless, remain relatively weak out to cosmic noon (z~2) - the epoch of peak star formation and black hole accretion - and beyond. However, as was demonstrated from the 1990s with molecular line observations, this can be overcome by utilising the natural amplification afforded by strong gravitational lensing, which results in an effective increase in integration time by the square of the total magnification (\mu^2) for an unresolved source. Here we outline how a dedicated lensed HI survey will leverage MeerKAT's high sensitivity, frequency coverage, large instantaneous bandwidth, and high dynamic range imaging to enable a lasting legacy of high-redshift HI emission detections well into the SKA era. This survey will not only provide high-impact, rapid-turnaround MeerKAT science commissioning results, but also unveil Milky Way-like systems towards cosmic noon which is not possible with any other SKA precursors/pathfinders. An ambitious lensed HI survey will therefore make a significant impact from MeerKAT commissioning all the way through to the full SKA era, and provide a more complete picture of the HI history of the Universe.Comment: 15 pages, 3 figures, accepted for publication, Proceedings of Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in Stellenbosch 25-27 May 2016. Comments welcom

    Compactness of Cold Gas in High-Redshift Galaxies

    Get PDF
    Galaxies in the early Universe were more compact and contained more molecular gas than today. In this paper, we revisit the relation between these empirical findings, and we quantitatively predict the cosmic evolution of the surface densities of atomic (HI) and molecular (H2) hydrogen in regular galaxies. Our method uses a pressure-based model for the H2/HI-ratio of the Interstellar Medium, applied to ~3*10^7 virtual galaxies in the Millennium Simulation. We predict that, on average, the HI-surface density of these galaxies saturates at Sigma_HI<10 Msun/pc^2 at all redshifts (z), while H2-surface densities evolve dramatically as Sigma_H2(1+z)^2.4. This scaling is dominated by a (1+z)^2 surface brightness scaling originating from the (1+z)^-1 size scaling of galaxies at high z. Current measurements of Sigma_H2 at high z, derived from CO-observations, tend to have even higher values, which can be quantitatively explained by a selection bias towards merging systems. However, despite the consistency between our high-z predictions and the sparse empirical data, we emphasize that the empirical data potentially suffer from serious selection biases and that the semi-analytic models remain in many regards uncertain. As a case study, we investigate the cosmic evolution of simulated galaxies, which resemble the Milky Way at z=0. We explicitly predict their HI- and H2-distribution at z=1.5, corresponding to the CO-detected galaxy BzK-21000, and at z=3, corresponding to the primary science goal of the Atacama Large Millimeter/submillimeter Array (ALMA).Comment: 5 pages, 3 figures, 2 table

    Three-point phase correlations: A new measure of non-linear large-scale structure

    Full text link
    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1-sigma agreement for separations r<30 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime where we find a 1-sigma agreement with the simulations for r<2 Mpc/h. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the non-linear regime of gravity, with less contamination from the power spectrum variance.Comment: 11 pages, 5 figures. v2: replacement of the low resolution simulations, more precise quantification of the agreement with simulations, references added. Matches published version. Our code to calculate the line correlation is available at http://blue-shift.ch/phas
    • …
    corecore