154 research outputs found

    Structural analyses of sintered MT and BZT ceramics

    Get PDF
    Development of dielectric materials is increasing with a rapid progress in mobile and satellite communications systems, where magnesium titanates find their place owing to good dielectric properties. Recently it has been established that, these materials, which are based on binary magnesium titanates (MgTi03 and Mg2Ti04) can be applied in MW engineering. These materials differ extremely low dielectric loss in the microwave range and high dielectric constant. On the other hand, barium-titanate compounds have attracted great attention for their specific microwave properties, as well. They were commonly used as parts of resonators, filters and multilayer ceramic capacitors, in the microwave region. The crystal phase with the structure BaZn2Ti40 11 is present in various commercial microwave dielectric materials based on barium-titanate compounds. Taking all this into account, in this article, the influence of mechanical activation of the MgO-Ti02 and BaCOr ZnO-Ti02 systems on phase composition, crystal structure and microstructure before and after sintering process, has been reported

    Influence of mechanical activation on MgO-TiO2 system

    Get PDF
    Poster presented at the 10th Conference of the Materials Research Society of Serbia - YUCOMAT 2008, Herceg Novi, Montenegro, September 8-12, 200

    Structural features of near equiatomic FeCo-2V semi-hard magnetic alloy prepared by MIM technology

    Get PDF
    The structural properties of a magnetically semi-hard near equiatomic FeCo-2wt%V (FeCoV) alloy produced by Powder Injection Moulding (PIM) (option by fine metal powder - Metal Injection Moulding (MIM) technology) were investigated in this paper. Starting granulate was prepared by mixing FeCoV powder with a low-viscosity binder. After injection, the green samples were first treated with a solvent and then thermally with the same aim of removing the binder. MIM technology was completed by high-temperature sintering for 3.5 hours at temperatures from 1370 OC to 1460 OC in a hydrogen atmosphere, which provides the necessary magnetic and mechanical characteristics. The influence of sintering temperature was investigated concerning the aspects of the processes of structural transformation by the methods of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The appearance of an intense diffraction peak of the α'-FeCo phase (crystal structure type B2) was registered for all investigated samples. Structural parameters particle size Dmax, Feret X, and Feret Y exhibit constant increase with increase of sintering temperature

    Structural characterization of mechanically activated MgO-TiO2 system

    Get PDF
    In this article the influence of ball miling process on structure of MgO-TiO2 system was investigated. The mixtures of MgO-TiO2 powders were mechanically activated in a planetary ball mill for the time period from 0 to 120 minutes. The influence of mechanical activation on the lattice vibrational spectra was studied by Raman spectroscopy at room temperature. Structural investigations have been performed on produced powders. Nitrogen adsorption method was used to determine the BET specific surface area and pore size distribution. Unusual results have been obtained: specific surface area continuously decreased up to 40 minutes of activation and increased after that, reaching its minimun value of 5.5 m2/g. The Raman spectra of activated powders have shown that anatase modes have been decreasing in intensity and broadening as the time of activation extended. Also, the additional modes attributed to TiO2 II, srilankite and rutile phases started to appear as a consequence of activation

    The Influence of Mechanical Activation on Sintering Process of BaCO3-SrCO3-TiO2 System

    Get PDF
    In this article the influence of mechanical activation on sintering process of barium-strontiumtitanate ceramics has been investigated. Both non-activated and mixtures treated in planetary ball mill for 5, 10, 20, 40, 80 and 120 minutes were sintered at 1100-1400 °C for 2 hours in air atmosphere. The influence of mechanical activation on phase composition and crystal structure has been analyzed by XRD, while the effect of activation and sintering process on microstructure was investigated by scanning electron microscopy. It has been established that temperature of 1100 °C was to low to induce final sintering stage for the system. Electrical measurements have been conducted for the densest ceramics sintered at 1400 °C for 2 hours

    Influence of MoO3 on cordierite ceramics sintering and crystallization

    Get PDF
    The influence of MoO3 on the process of cordierite ceramics preparation, 2MgO-2Al2O3-5SiO2 (MAS) was researched by sintering followed binary systems: MgO/MoO3 (sintered at 850 ºC and 1000 ºC), Al2O3/Bi2O3 and SiO2/Bi2O3 (sintered at 850 ºC and 1000 ºC). Composition of these systems was 80 % of oxide and 20 % MoO3. The effects of sintering, the composition and morphology were followed by x-ray diffraction, scanning electron microscopy and EDS analysis. It has been found that MoO3, beside liquid phase, forms intermediary unstable compounds with MgO and Al2O3. The following research is planned to investigate the effect of 5 % mass of MoO3 on the electrical properties of cordierite ceramics

    Adsorption capacity of wollastonite based adsorbents with porous structure controlled with different progeny agents

    Get PDF
    Porous wollastonite (WL) based adsorbents were fabricated by a pressureless sintering process by using low molecular weight poly(methyl methacrylate) (PMMA), nanocellulose (NC) and yeast as the pore forming agents. WL based adsorbents were synthesized in two step process. In the first step, calcium carbonate and methylhidrogen cyclosiloxane were mixed with isopropyl alcohol, dried and calcined at 250 °C. Second step included WL mixing with porogen, followed by controlled calcination and on that way the sintered materials with randomly distributed pores were obtained. The effectiveness of the synthesis steps as well as material properties, i.e., the pore morphology were determined by FTIR analysis and scanning electron microscopy (SEM), respectively. The pore morphology and adsorption capacity was changed dramatically by changing the pore forming agent. The highest adsorption capacity was obtained when NC was used as the pore forming agent. Obtained materials showed moderate adsorption capacities of 10.56, 8.42 and 11.33 mg/g with respect to As5+, Cr6+ and phosphate, respectively. The con centrations of heavy metal ions were determined by using Ion chromatography coupled with mass spectrometry (ICP-MS)

    Electronic properties of BZT nano-ceramic grades at low frequency region

    Get PDF
    BZT ceramics was prepared by using fine powder mixture of BaCO3, TiO2 and ZrO2 in the respective molar ratio to form Ba(Zr0.10Ti0.90)O3 via solid state reaction at elevated temperature. The prepared BZT was milled in the planetary ball mill from 0-120 min to achieve different powder grades from micron to nano-sized particles. After the powder characterization by XRD and SEM the samples were pressed in disc shape and sintered at different temperatures from 1100-1350°C in the air. The sintered samples were characterized by SEM and their density and average grain size was determined and presented vs. sintering temperature and powder grades (milling time). After that the silver epoxy electrodes were deposited on sintered disc samples. The disc samples capacity and resistivity were measured at low frequency region from 1 Hz to 200 kHz using low frequency impedance analyzer. The sintering temperatures and powder grades were used as parameters. Finally the specific resistance ρ, dielectric constant (ε' + jε") and tgδ where determined from the impedance measurements. The behavior of electronic properties where analyzed e.g. the relaxation effect of the space charge (inter-granular electric charges) vs. sintering temperature and ceramic grades. The results obtained were compared with best literature data for the losses in BZT ceramics at low frequencies

    Microstructure evolution and sintering kinetics of ZnO

    Get PDF
    The aim of this work was to analyse the kinetics and microstructure evolution of ZnO sintering process. ZnO powder was isothermally sintered (15, 30, 60, 90 and 120 min) in the temperature range from 8000C to 12000C. The values of Lenel parameter were calculated and used for the analysis of the densification and mass transport processes. Using scanning electron microscopy the analysis of the microstructure evolution and dependence of the average grain size with temperature and time of sintering was obtained. The results of this research could enable development of a new phenomenological equations in the analyses of ZnO-based materials sintering kinetics
    corecore