444 research outputs found

    Magnetic transitions in Pr2NiO4 single crystal

    Get PDF
    The magnetic properties of a stoichiometric Pr2NiO4 single crystal have been examined by means of the temperature dependence of the complex ac susceptibility and the isothermal magnetization in fields up to 200 kOe at T=4.2 K. Three separate phases have been identified and their anisotropic character has been analyzed. A collinear antiferromagnetic phase appears first between TN = 325 K and Tc1 = 115 K, where the Pr ions are polarized by an internal magnetic field. At Tc1 a first modification of the magnetic structure occurs in parallel with a structural phase transition (Bmab to P42/ncm). This magnetic transition has a first‐order character and involves both the out‐of‐plane and the in‐plane spin components (magnetic modes gx and gxcyfz, respectively). A second magnetic transition having also a first‐order character is also clearly identified at Tc2 = 90 K which corresponds to a spin reorientation process (gxcyfz to cxgyaz magnetic modes). It should be noted as well that the out‐of‐phase component of χac shows a peak around 30 K which reflects the coexistence of both magnetic configurations in a wide temperature interval. Finally, two field‐induced transitions have been observed at 4.2 K when the field is directed along the c axis. We propose that the high‐field anomaly arises from a metamagnetic transition of the weak ferromagnetic component, similarly to La2CuO4

    Effect of strain and magnetic field on the critical current and electric resistance of the joints between HTS coated conductors

    Full text link
    Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented

    Effect of strain and magnetic field on the critical current and electric resistance of the joints between HTS coated conductors

    Get PDF
    Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joints has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Additionally, fatigue tests under constant cyclic stress and loading-unloading ramps have been carried out in order to evaluate the electromechanical behavior of the joints and the effect of maximum applied stress on the critical current. Finally, a preliminary numerical study by means of the Finite Element Method (FEM) of the electromechanical behavior of the joints between commercial HTS is presented

    Observation of insulator-metal transition in EuNiO3_{3} under high pressure

    Full text link
    The charge transfer antiferromagnetic (TN_{N} =220 K) insulator EuNiO3_{3} undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at TMI_{MI}=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO3_{3} using electrical resistance measurements, {151}^Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at pc_{c} =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of TN_{N} (TN_{N} ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure

    A hidden Goldstone mechanism in the Kagom\'e lattice antiferromagnet

    Full text link
    In this paper, we study the phases of the Heisenberg model on the \kagome lattice with antiferromagnetic nearest neighbour coupling J1J_1 and ferromagnetic next neighbour coupling J2J_2. Analysing the long wavelength, low energy effective action that describes this model, we arrive at the phase diagram as a function of χ=J2J1\chi = \frac{J_2}{J_1} . The interesting part of this phase diagram is that for small χ\chi, which includes χ=0\chi =0, there is a phase with no long range spin order and with gapless and spin zero low lying excitations. We discuss our results in the context of earlier, numerical and experimental work.Comment: 21 pages, latex file with 5 figure

    Vortex liquid entanglement in twinned YBa_2Cu_3O_7 /Y_2BaCuO_5 composite superconductors

    Get PDF
    The angular dependence of the in-plane resistivity ρ(T,H, θ) of melt textured YBa_2Cu_3O_7/Y_2BaCuO_5 composites has been measured in a large range of magnetic fields and temperatures and from them, the intrinsic anisotropy of the superconducting state has been verified following the anisotropic Ginzburg-Landau approach. The influence of correlated defects like twin boundaries and quenched disorder generated by Y_2BaCuO_5 precipitates on the pinning behavior of these composites in the liquid vortex state is analyzed, and the corresponding phase diagram is determined and compared to that of twinned single crystals. We show that the irreversibility line displays an upwards shift due to twin boundary pinning enabling to define a ''quenched'' Bose glass transition. A new region in the vortex liquid state is identified where twin boundary pinning defines a partially entangled liquid vortex state characterized by a short-range c-axis vortex coherence. The transition to the entangled liquid phase is experimentally determined. The relevance of this depinning line and its unique position with respect to twinned single crystals is discussed. [S0163- 1829(99)01741-5]

    Frustration driven lattice distortion; an NMR investigation of Y2Mo2O7

    Full text link
    We have investigated the 89Y NMR spectrum and spin lattice relaxation, T1, in the magnetically frustrated pyrochlore Y2Mo2O7. We find that upon cooling the spectrum shifts, and broadens asymmetrically. A detailed examination of the low T spectrum reveals that it is constructed from multiple peaks, each shifted by a different amount. We argue that this spectrum is due to discrete lattice distortions, and speculate that these distortions relieve the frustration and reduce the system's energy.Comment: To be published in Phys. Rev. Let

    Magneto-thermodynamics of the spin-1/2 Kagome antiferromagnet

    Full text link
    In this paper, we use a new hybrid method to compute the thermodynamic behavior of the spin-1/2 Kagome antiferromagnet under the influence of a large external magnetic field. We find a T^2 low-temperature behavior and a very low sensitivity of the specific heat to a strong external magnetic field. We display clear evidence that this low temperature magneto-thermal effect is associated to the existence of low-lying fluctuating singlets, but also that the whole picture (T^2 behavior of Cv and thermally activated spin susceptibility) implies contribution of both non magnetic and magnetic excitations. Comparison with experiments is made.Comment: 4 pages, LaTeX 2.09 and RevTeX with 3 figures embedded in the text. Version to appear in Phys. Rev. Let
    corecore