18 research outputs found

    How neurogenesis finds its place in a hardwired sensory system

    Get PDF
    So far most studies on adult neurogenesis aimed to unravel mechanisms and molecules regulating the integration of newly generated neurons in the mature brain parenchyma. The exceedingly abundant amount of results that followed, rather than being beneficial in the perspective of brain repair, provided a clear evidence that adult neurogenesis constitutes a necessary feature to the correct functioning of the hosting brain regions. In particular, the rodent olfactory system represents a privileged model to study how neuronal plasticity and neurogenesis interact with sensory functions. Until recently, the vomeronasal system (VNS) has been commonly described as being specialized in the detection of innate chemosignals. Accordingly, its circuitry has been considered necessarily stable, if not hard-wired, in order to allow stereotyped behavioral responses. However, both first and second order projections of the rodent VNS continuously change their synaptic connectivity due to ongoing postnatal and adult neurogenesis. How the functional integrity of a neuronal circuit is maintained while newborn neurons are continuously added—or lost—is a fundamental question for both basic and applied neuroscience. The VNS is proposed as an alternative model to answer such question. Hereby the underlying motivations will be reviewed

    Amygdala Corticofugal Input Shapes Mitral Cell Responses in the Accessory Olfactory Bulb

    Get PDF
    Interconnections between the olfactory bulb and the amygdala are a major pathway for triggering strong behavioral responses to a variety of odorants. However, while this broad mapping has been established, the patterns of amygdala feedback connectivity and the influence on olfactory circuitry remain unknown. Here, using a combination of neuronal tracing approaches, we dissect the connectivity of a cortical amygdala [posteromedial cortical nucleus (PmCo)] feedback circuit innervating the mouse accessory olfactory bulb. Optogenetic activation of PmCo feedback mainly results in feedforward mitral cell (MC) inhibition through direct excitation of GABAergic granule cells. In addition, LED-driven activity of corticofugal afferents increases the gain of MC responses to olfactory nerve stimulation. Thus, through corticofugal pathways, the PmCo likely regulates primary olfactory and social odor processing

    Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing

    Get PDF
    Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.Canada Foundation for Innovation http://dx.doi.org/10.13039/501100000196Canadian Institutes of Health Research http://dx.doi.org/10.13039/501100000024Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100002790Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Le Fonds Québécois de la Recherche sur la Nature et les TechnologiesMerit Scholarship for Foreign StudentsPeer Reviewe

    A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Gαo

    Get PDF
    Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear.To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones.These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice
    corecore