17 research outputs found
Reducing Visceral-Motion-Related Artifacts on the Liver with Dual-Energy CT: A Comparison of Four Different CT Scanner Techniques
Purpose: To assess the influence of different dual-energy CT (DECT) scanner techniques on the severity of visceral-motion-related artifacts on the liver. Methods: Two independent readers retrospectively evaluated visceral-motion-related artifacts on the liver on 120-kVp(-like), monoenergetic low- and high-keV, virtual non-contrast (VNC), and iodine images acquired on a dual-source, twin-beam, fast kV-switching, and dual-layer spectral detector scanner. Quantitative assessment: Depth of artifact extension into the liver, measurements of Hounsfield Units (HU) and iodine concentrations. Qualitative assessment: Five-point Likert scale (1 = none to 5 = severe). Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests. Results: 615 contrast-enhanced routine clinical DECT scans of the abdomen were evaluated in 458 consecutive patients (mean age: 61 +/- 14 years, 331 men). For dual-source and twin-beam scanners, depth of extension of artifacts into the liver was significantly shorter and artifact severity scores significantly lower for 120-kVp-like images compared with the other image reconstructions (p < 0.001, each). For fast kV-switching and spectral detector scanner images, depth of extension of artifacts was significantly shorter and artifact severity scores significantly lower for iodine images (p < 0.001, each). Dual-source 120-kVp-like and spectral detector iodine images reduced artifacts to an extent that no significant difference in HU or iodine concentrations between artifacts (dual-source: 97 HU, spectral detector: 1.9 mg/mL) and unaffected liver parenchyma (dual-source: 108 HU, spectral detector: 2.1 mg/mL) was measurable (dual-source: p = 0.32, spectral detector: p = 0.15). Conclusion: Visceral-motion-related artifacts on the liver can be markedly reduced by viewing 120-kVp-like images for dual-source and twin-beam DECT scanners and iodine images for fast kV-switching and dual-layer spectral detector DECT scanners
Imaging standardization in metastatic colorectal cancer : a joint EORTC-ESOI-ESGAR expert consensus recommendation
Background: Treatment monitoring in metastatic colorectal cancer (mCRC) relies on imaging
to evaluate the tumor burden. Response Evaluation Criteria in Solid Tumors (RECIST) provide
a framework on reporting and interpretation of imaging findings yet offer no guidance on a
standardized imaging protocol tailored to mCRC patients. Imaging protocol heterogeneity
remains a challenge for the reproducibility of conventional imaging endpoints and is an
obstacle for research on novel imaging endpoints.
Patients and methods: Acknowledging the recently highlighted potential of radiomics and
artificial intelligence (AI) tools as decision support for patient care in mCRC, a multidisciplinary,
international, and expert panel of imaging specialists was formed to find consensus on mCRC
imaging protocols using the Delphi method.
Results: Under the guidance of the European Organisation for Research and Treatment of
Cancer (EORTC) Imaging and Gastrointestinal Tract Cancer Groups, the European Society of
Oncologic Imaging (ESOI) and the European Society of Gastrointestinal and Abdominal
Radiology (ESGAR), the EORTC-ESOI-ESGAR core imaging protocol was identified.
Conclusion: This consensus protocol attempts to promote standardization and to diminish
variations in patient preparation, scan acquisition and scan reconstruction. We anticipate that
this standardization will increase reproducibility of radiomics and AI studies and serve as a
catalyst for future research on imaging endpoints. For ongoing and future mCRC trials, we
encourage principal investigators to support the dissemination of these imaging standards
across recruiting centers.peer-reviewe
Dual-energy CT of acute bowel ischemia.
Acute bowel ischemia is a condition with high mortality and requires rapid intervention to avoid catastrophic outcomes. Swift and accurate imaging diagnosis is essential because clinical findings are commonly nonspecific. Conventional contrast enhanced CT of the abdomen has been the imaging modality of choice to evaluate suspected acute bowel ischemia. However, subtlety of image findings and lack of non-contrast or arterial phase images can make correct diagnosis challenging. Dual-energy CT provides valuable information toward assessing bowel ischemia. Dual-energy CT exploits the differential X-ray attenuation at two different photon energy levels to characterize the composition of tissues and reveal the presence or absence of faint intravenous iodinated contrast to improve reader confidence in detecting subtle bowel wall enhancement. With the same underlying technique, virtual non-contrast images can help to show non-enhancing hyperdense hemorrhage of the bowel wall in intravenous contrast-enhanced scans without the need to acquire actual non-contrast scans. Dual-energy CT derived low photon energy (keV) virtual monoenergetic images emphasize iodine contrast and provide CT angiography-like images from portal venous phase scans to better evaluate abdominal arterial patency. In Summary, dual-energy CT aids diagnosing acute bowel ischemia in multiple ways, including improving visualization of the bowel wall and mesenteric vasculature, revealing intramural hemorrhage in contrast enhanced scans, or possibly reducing intravenous contrast dose
Dixon or DWI – Comparing the utility of fat fraction and apparent diffusion coefficient to distinguish between malignant and acute osteoporotic vertebral fractures
Purpose
To compare fat fraction (FF) and apparent diffusion coefficient (ADC) as discriminators distinguishing malignant from acute/subacute osteoporotic vertebral fractures.
Method
1.5 T MRIs of 42 malignant and 27 acute/subacute osteoporotic vertebral fractures (38 patients) were retrospectively reviewed. Two readers independently classified fractures as malignant or osteoporotic based on conventional imaging morphology. Diagnostic reader confidence was rated as confident or not confident. FF was derived from axial T1 gradient-echo 2-point Dixon MRI. ADC maps were calculated from axial b50 and b900 images. Both readers independently performed ROI measurements of mean FF and ADC of the same fractured vertebrae. FF and ADC values, corresponding ROC curves and optimized cut-off value performance were compared. Inter-reader agreement was analysed by calculation of intraclass correlation coefficients (ICCs). A p-value < 0.05 was deemed significant.
Results
Mean FF and ADC were significantly lower in malignant (9.5 % and 1.05 × 10−3 mm²/s) compared to osteoporotic fractures (32 % and 1.34 × 10−3 mm²/s, all p < 0.001). The optimal cut-off FF was 11.5 %, detecting malignant fractures with 86 %/89 % sensitivity/specificity. The optimal ADC cut-off of 1.04 × 10−3 mm/s² yielded 62 %/96 % sensitivity/specificity. FF AUC (0.93) was significantly larger than ADC AUC (0.82, p = 0.03). In the subgroup of nine cases reported with low expert reader confidence, the optimized cut-off specificities of FF (83 %) and ADC (83 %) exceeded reader specificity (50 %). There was excellent inter-reader agreement for mean FF (ICC = 0.99) and good agreement for mean ADC (ICC = 0.86) measurements.
Conclusion
FF and ADC can improve reader specificity to distinguish between malignant and acute or subacute osteoporotic vertebral fractures. As single discriminator, FF was superior to ADC.ISSN:0720-048XISSN:1872-772
Reduction of Peristalsis-Related Streak Artifacts on the Liver with Dual-Layer Spectral CT
Background: Peristalsis-related streak artifacts on the liver compromise image quality and diagnostic accuracy. Purpose: To assess dual-layer spectral-detector computed tomography (CT) image reconstructions for reducing intestinal peristalsis-related streak artifacts on the liver. Methods: We retrospectively evaluated 220 contrast-enhanced abdominal dual-energy CT scans in 131 consecutive patients (mean age: 68 ± 10 years, 120 men) who underwent routine clinical dual-layer spectral-detector CT imaging (120 kVp, 40 keV, 200 keV, virtual non-contrast (VNC), iodine images). Two independent readers evaluated bowel peristalsis streak artifacts on the liver qualitatively on a five-point Likert scale (1 = none to 5 = severe) and quantitatively by depth of streak artifact extension into the liver and measurements of Hounsfield Unit and iodine concentration differences from normal liver. Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests. Results: 12 scans were excluded due to missing spectral data, artifacts on the liver originating from metallic foreign materials, or oral contrast material. Streak artifacts on the liver were seen in 51/208 (25%) scans and involved the left lobe only in 49/51 (96%), the right lobe only in 0/51 (0%), and both lobes in 2/51 (4%) scans. Artifact frequency was lower in iodine than in 120 kVp images (scans 18/208 vs. 51/208, p < 0.001). Artifact severity was less in iodine than in 120 kVp images (median score 1 vs. 3, p < 0.001). Streak artifact extension into the liver was shorter in iodine than 120 kVp images (mean length 2 ± 4 vs. 12 ± 5 mm, p < 0.001). Hounsfield Unit and iodine concentration differed significantly between bright streak artifacts and normal liver in 120 kVp, 40 keV, 200 keV, and VNC images (p < 0.001, each), but not in iodine images (p = 0.23). Conclusion: Intestinal peristalsis-related streak artifacts commonly affect the left liver lobe at CT and can be substantially reduced by viewing iodine dual-energy CT image reconstructions
Improved Sensitivity and Reader Confidence in CT Colonography Using Dual-Layer Spectral CT: A Phantom Study
Background Limited cathartic preparations for CT colonography with fecal tagging can improve patient comfort but may result in nondiagnostic examinations from poorly tagged stool. Dual-energy CT may overcome this limitation by improving the conspicuity of the contrast agent, but more data are needed. Purpose To investigate whether dual-energy CT improves polyp detection in CT colonography compared with conventional CT at different fecal tagging levels in vitro. Materials and Methods In this HIPAA-compliant study, between December 2017 and August 2019, a colon phantom 30 cm in diameter containing 60 polyps of different shapes (spherical, ellipsoid, flat) and size groups (5-9 mm, 11-15 mm) was constructed and serially filled with simulated feces tagged with four different iodine concentrations (1.26, 2.45, 4.88, and 21.00 mg of iodine per milliliter), then it was scanned with dual-energy CT with and without an outer fat ring to simulate large body size (total diameter, 42 cm). Two readers independently reviewed conventional 120-kVp CT and 40-keV monoenergetic dual-energy CT images to record the presence of polyps and confidence (three-point scale.) Generalized estimating equations were used for sensitivity comparisons between conventional CT and dual-energy CT, and a Wilcoxon signed-rank test was used for reader confidence. Results Dual-energy CT had higher overall sensitivity for polyp detection than conventional CT (58.8%; 95% confidence interval [CI]: 49.7%, 67.3%; 564 of 960 polyps vs 42.1%; 95% CI: 32.1%, 52.8%; 404 of 960 polyps; P < .001), including with the fat ring (48% and 31%, P < .001). Reader confidence improved with dual-energy CT compared with conventional images on all tagging levels (P < .001). Interrater agreement was substantial (κ = 0.74; 95% CI: 0.70, 0.77). Conclusion Compared with conventional 120-kVp CT, dual-energy CT improved polyp detection and reader confidence in a dedicated dual-energy CT colonography phantom, especially with suboptimal fecal tagging. © RSNA, 2020
Reduction of Peristalsis-Related Streak Artifacts on the Liver with Dual-Layer Spectral CT.
BackgroundPeristalsis-related streak artifacts on the liver compromise image quality and diagnostic accuracy.PurposeTo assess dual-layer spectral-detector computed tomography (CT) image reconstructions for reducing intestinal peristalsis-related streak artifacts on the liver.MethodsWe retrospectively evaluated 220 contrast-enhanced abdominal dual-energy CT scans in 131 consecutive patients (mean age: 68 ± 10 years, 120 men) who underwent routine clinical dual-layer spectral-detector CT imaging (120 kVp, 40 keV, 200 keV, virtual non-contrast (VNC), iodine images). Two independent readers evaluated bowel peristalsis streak artifacts on the liver qualitatively on a five-point Likert scale (1 = none to 5 = severe) and quantitatively by depth of streak artifact extension into the liver and measurements of Hounsfield Unit and iodine concentration differences from normal liver. Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests.Results12 scans were excluded due to missing spectral data, artifacts on the liver originating from metallic foreign materials, or oral contrast material. Streak artifacts on the liver were seen in 51/208 (25%) scans and involved the left lobe only in 49/51 (96%), the right lobe only in 0/51 (0%), and both lobes in 2/51 (4%) scans. Artifact frequency was lower in iodine than in 120 kVp images (scans 18/208 vs. 51/208, p < 0.001). Artifact severity was less in iodine than in 120 kVp images (median score 1 vs. 3, p < 0.001). Streak artifact extension into the liver was shorter in iodine than 120 kVp images (mean length 2 ± 4 vs. 12 ± 5 mm, p < 0.001). Hounsfield Unit and iodine concentration differed significantly between bright streak artifacts and normal liver in 120 kVp, 40 keV, 200 keV, and VNC images (p < 0.001, each), but not in iodine images (p = 0.23).ConclusionIntestinal peristalsis-related streak artifacts commonly affect the left liver lobe at CT and can be substantially reduced by viewing iodine dual-energy CT image reconstructions
Reducing Visceral-Motion-Related Artifacts on the Liver with Dual-Energy CT: A Comparison of Four Different CT Scanner Techniques.
Purpose: To assess the influence of different dual-energy CT (DECT) scanner techniques on the severity of visceral-motion-related artifacts on the liver. Methods: Two independent readers retrospectively evaluated visceral-motion-related artifacts on the liver on 120-kVp(-like), monoenergetic low- and high-keV, virtual non-contrast (VNC), and iodine images acquired on a dual-source, twin-beam, fast kV-switching, and dual-layer spectral detector scanner. Quantitative assessment: Depth of artifact extension into the liver, measurements of Hounsfield Units (HU) and iodine concentrations. Qualitative assessment: Five-point Likert scale (1 = none to 5 = severe). Artifact severity between image reconstructions were compared by Wilcoxon signed-rank and paired t-tests. Results: 615 contrast-enhanced routine clinical DECT scans of the abdomen were evaluated in 458 consecutive patients (mean age: 61 ± 14 years, 331 men). For dual-source and twin-beam scanners, depth of extension of artifacts into the liver was significantly shorter and artifact severity scores significantly lower for 120-kVp-like images compared with the other image reconstructions (p < 0.001, each). For fast kV-switching and spectral detector scanner images, depth of extension of artifacts was significantly shorter and artifact severity scores significantly lower for iodine images (p < 0.001, each). Dual-source 120-kVp-like and spectral detector iodine images reduced artifacts to an extent that no significant difference in HU or iodine concentrations between artifacts (dual-source: 97 HU, spectral detector: 1.9 mg/mL) and unaffected liver parenchyma (dual-source: 108 HU, spectral detector: 2.1 mg/mL) was measurable (dual-source: p = 0.32, spectral detector: p = 0.15). Conclusion: Visceral-motion-related artifacts on the liver can be markedly reduced by viewing 120-kVp-like images for dual-source and twin-beam DECT scanners and iodine images for fast kV-switching and dual-layer spectral detector DECT scanners
Interprofessional approach for teaching functional knee joint anatomy
AbstractProfound knowledge in functional and clinical anatomy is a prerequisite for efficient diagnosis in medical practice. However, anatomy teaching does not always consider functional and clinical aspects. Here we introduce a new interprofessional approach to effectively teach the anatomy of the knee joint. The presented teaching approach involves anatomists, orthopaedists and physical therapists to teach anatomy of the knee joint in small groups under functional and clinical aspects. The knee joint courses were implemented during early stages of the medical curriculum and medical students were grouped with students of physical therapy to sensitize students to the importance of interprofessional work. Evaluation results clearly demonstrate that medical students and physical therapy students appreciated this teaching approach. First evaluations of following curricular anatomy exams suggest a benefit of course participants in knee-related multiple choice questions. Together, the interprofessional approach presented here proves to be a suitable approach to teach functional and clinical anatomy of the knee joint and further trains interprofessional work between prospective physicians and physical therapists as a basis for successful healthcare management