93 research outputs found

    Common Bean Reaction To Angular Leaf Spot Comprises Transcriptional Modulation Of Genes In The Als10.1 Qtl

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (OIL). In this study, we determined the gene content of the major OIL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvu1.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to F? griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.6Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [2009/024112, 2010/51673-7]CAPES [6899/10-2

    Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL

    Get PDF
    Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (OIL). In this study, we determined the gene content of the major OIL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvu1.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to F? griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction6COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP6899/10-22009/024112; 2010/51673-

    Inheritance of growth habit detected by genetic linkage analysis using microsatellites in the common bean (Phaseolus vulgaris L.).

    Get PDF
    The genetic linkage map for the common bean (Phaseolus vulgaris L.) is a valuable tool for breeding programs. Breeders provide new cultivars that meet the requirements of farmers and consumers, such as seed color, seed size, maturity, and growth habit. A genetic study was conducted to examine the genetics behind certain qualitative traits. Growth habit is usually described as a recessive trait inherited by a single gene, and there is no consensus about the position of the locus. The aim of this study was to develop a new genetic linkage map using genic and genomic microsatellite markers and three morphological traits: growth habit, flower color, and pod tip shape. A mapping population consisting of 380 recombinant F10 lines was generated from IAC-UNA × CAL143. A total of 871 microsatellites were screened for polymorphisms among the parents, and a linkage map was obtained with 198 mapped microsatellites. The total map length was 1865.9 cM, and the average distance between markers was 9.4 cM. Flower color and pod tip shape were mapped and segregated at Mendelian ratios, as expected. The segregation ratio and linkage data analyses indicated that the determinacy growth habit was inherited as two independent and dominant genes, and a genetic model is proposed for this trait

    Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans

    Get PDF
    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning

    Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans.

    Get PDF
    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. ForPWMresistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning

    Adaptação da técnica de fluorescência para fins de genotipagem com novos marcadores microssatélite em feijoeiro

    Get PDF
    The objectives of this work were to adapt the fluorescent labeling (PCR) technique using M13 universal primer for genotyping purposes, and to present a new set of microsatellite markers for common bean (Phaseolus vulgaris L.). A large population (380 common bean lines) was used for microsatellite genotyping. PCR fluorescent labeling method showed to be very efficient for multiplex analysis, providing lower costs and saving time, thus increasing the quality of genotyping analysis. A new set of 50 microsatellites developed from an enriched library derived from cultivar IAC-UNA was presented. This study provides better tools for assisting common bean breeding programs.Os objetivos deste trabalho foram adaptar a técnica de marcação fluorescente de produtos da (PCR) com uso do iniciador universal M13, para aplicação em genotipagem, e apresentar novos marcadores microssatélite para o feijoeiro (Phaseolus vulgaris L.). Uma população de grande tamanho amostral (380 linhagens) foi utilizada para genotipagem dos microssatélites. O método de PCR marcado por fluorescência demonstrou ser muito eficiente para a análise "multiplex" e proporcionou a redução de custos e ganho de tempo, aumentando a qualidade de análise da genotipagem. Foram apresentados 50 novos locos de microssatélites, desenvolvidos a partir de biblioteca enriquecida a partir da cultivar IAC-UNA. Este estudo fornece ferramentas melhores para assistir aos programas de melhoramento do feijoeiro

    Novos marcadores microssatélites desenvolvidos a partir de uma biblioteca genômica enriquecida em feijão-comum

    Get PDF
    The objective of this work was to develop new microsatellite markers in common bean. Ninety nine new microsatelitte loci were developed from a microsatellite enriched library for (CT)8 and (GT)8 motifs, from CAL-143 line. The majority of microsatellite sequences (51%) was related to cellular metabolism. The remaining sequences were associated to transcription functions. Only 17.2% of the sequences presented some level of similarity with other plant species genes.O objetivo deste trabalho foi desenvolver novos marcadores microssatélites para feijão-comum. Noventa e nove novos locos de microssatélites foram desenvolvidos a partir de uma biblioteca enriquecida com motivos (CT)8 e (GT)8, proveniente da linhagem CAL-143. A maioria dos microssatélites (51%) esteve relacionada ao metabolismo celular. As demais seqüências estiveram associadas a funções de transcrição. Apenas 17,2% das seqüências apresentaram alguma semelhança com genes de outras espécies

    Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Get PDF
    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm
    corecore