206 research outputs found

    Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition

    Full text link
    We study reduced-order models of three-dimensional perturbations in linearized channel flow using balanced proper orthogonal decomposition (BPOD). The models are obtained from three-dimensional simulations in physical space as opposed to the traditional single-wavenumber approach, and are therefore better able to capture the effects of localized disturbances or localized actuators. In order to assess the performance of the models, we consider the impulse response and frequency response, and variation of the Reynolds number as a model parameter. We show that the BPOD procedure yields models that capture the transient growth well at a low order, whereas standard POD does not capture the growth unless a considerably larger number of modes is included, and even then can be inaccurate. In the case of a localized actuator, we show that POD modes which are not energetically significant can be very important for capturing the energy growth. In addition, a comparison of the subspaces resulting from the two methods suggests that the use of a non-orthogonal projection with adjoint modes is most likely the main reason for the superior performance of BPOD. We also demonstrate that for single-wavenumber perturbations, low-order BPOD models reproduce the dominant eigenvalues of the full system better than POD models of the same order. These features indicate that the simple, yet accurate BPOD models are a good candidate for developing model-based controllers for channel flow.Comment: 35 pages, 20 figure

    Tongue interface based on surface EMG signals of suprahyoid muscles

    Get PDF
    The research described herein was undertaken to develop and test a novel tongue interface based on classification of tongue motions from the surface electromyography (EMG) signals of the suprahyoid muscles detected at the underside of the jaw. The EMG signals are measured via 22 active surface electrodes mounted onto a special flexible boomerang-shaped base. Because of the sensor’s shape and flexibility, it can adapt to the underjaw skin contour. Tongue motion classification was achieved using a support vector machine (SVM) algorithm for pattern recognition where the root mean square (RMS) features and cepstrum coefficients (CC) features of the EMG signals were analyzed. The effectiveness of the approach was verified with a test for the classification of six tongue motions conducted with a group of five healthy adult volunteer subjects who had normal motor tongue functions. Results showed that the system classified all six tongue motions with high accuracy of 95.1 ± 1.9 %. The proposed method for control of assistive devices was evaluated using a test in which a computer simulation model of an electric wheelchair was controlled using six tongue motions. This interface system, which weighs only 13.6 g and which has a simple appearance, requires no installation of any sensor into the mouth cavity. Therefore, it does not hinder user activities such as swallowing, chewing, or talking. The number of tongue motions is sufficient for the control of most assistive devices

    Monte Carlo Simulation of Sinusoidally Modulated Superlattice Growth

    Full text link
    The fabrication of ZnSe/ZnTe superlattices grown by the process of rotating the substrate in the presence of an inhomogeneous flux distribution instead of successively closing and opening of source shutters is studied via Monte Carlo simulations. It is found that the concentration of each compound is sinusoidally modulated along the growth direction, caused by the uneven arrival of Se and Te atoms at a given point of the sample, and by the variation of the Te/Se ratio at that point due to the rotation of the substrate. In this way we obtain a ZnSe1x_{1-x}Tex_x alloy in which the composition xx varies sinusoidally along the growth direction. The period of the modulation is directly controlled by the rate of the substrate rotation. The amplitude of the compositional modulation is monotonous for small angular velocities of the substrate rotation, but is itself modulated for large angular velocities. The average amplitude of the modulation pattern decreases as the angular velocity of substrate rotation increases and the measurement position approaches the center of rotation. The simulation results are in good agreement with previously published experimental measurements on superlattices fabricated in this manner

    Nucleon-Nucleon Interaction: A Typical/Concise Review

    Get PDF
    Nearly a recent century of work is divided to Nucleon-Nucleon (NN) interaction issue. We review some overall perspectives of NN interaction with a brief discussion about deuteron, general structure and symmetries of NN Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN interaction models, as frameworks to build NN potentials, are reviewed concisely. We try to include and study almost all well-known potentials in a similar way, discuss more on various commonly used plain forms for two-nucleon interaction with an emphasis on the phenomenological and meson-exchange potentials as well as the constituent-quark potentials and new ones based on chiral effective field theory and working in coordinate-space mostly. The potentials are constructed in a way that fit NN scattering data, phase shifts, and are also compared in this way usually. An extra goal of this study is to start comparing various potentials forms in a unified manner. So, we also comment on the advantages and disadvantages of the models and potentials partly with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and typos fixe

    HEX expression and localization in normal mammary gland and breast carcinoma

    Get PDF
    BACKGROUND: The homeobox gene HEX is expressed in several cell types during different phases of animal development. It encodes for a protein localized in both the nucleus and the cytoplasm. During early mouse development, HEX is expressed in the primitive endoderm of blastocyst. Later, HEX is expressed in developing thyroid, liver, lung, as well as in haematopoietic progenitors and endothelial cells. Absence of nuclear expression has been observed during neoplastic transformation of the thyroid follicular cells. Aim of the present study was to evaluate the localization and the function of the protein HEX in normal and tumoral breast tissues and in breast cancer cell lines. METHODS: HEX expression and nuclear localization were investigated by immunohistochemistry in normal and cancerous breast tissue, as well as in breast cancer cell lines. HEX mRNA levels were evaluated by real-time PCR. Effects of HEX expression on Sodium Iodide Symporter (NIS) gene promoter activity was investigated by HeLa cell transfection. RESULTS: In normal breast HEX was detected both in the nucleus and in the cytoplasm. In both ductal and lobular breast carcinomas, a great reduction of nuclear HEX was observed. In several cells from normal breast tissue as well as in MCF-7 and T47D cell line, HEX was observed in the nucleolus. MCF-7 treatment with all-trans retinoic acid enhanced HEX expression and induced a diffuse nuclear localization. Enhanced HEX expression and diffuse nuclear localization were also obtained when MCF-7 cells were treated with inhibitors of histone deacetylases such as sodium butyrate and trichostatin A. With respect to normal non-lactating breast, the amount of nuclear HEX was greatly increased in lactating tissue. Transfection experiments demonstrated that HEX is able to up-regulate the activity of NIS promoter. CONCLUSION: Our data indicate that localization of HEX is regulated in epithelial breast cells. Since modification of localization occurs during lactation and tumorigenesis, we suggest that HEX may play a role in differentiation of the epithelial breast cell

    Practical recipes for the model order reduction, dynamical simulation, and compressive sampling of large-scale open quantum systems

    Full text link
    This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto a state-space manifold having reduced dimensionality and possessing a Kahler potential of multi-linear form. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low-dimensionality Kahler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given, and methods for quantum state optimization by Dantzig selection are given.Comment: 104 pages, 13 figures, 2 table

    State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

    Get PDF
    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets
    corecore