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Abstract 

The research described herein was undertaken to develop and test a novel tongue interface based on classification 
of tongue motions from the surface electromyography (EMG) signals of the suprahyoid muscles detected at the 
underside of the jaw. The EMG signals are measured via 22 active surface electrodes mounted onto a special flexible 
boomerang-shaped base. Because of the sensor’s shape and flexibility, it can adapt to the underjaw skin contour. 
Tongue motion classification was achieved using a support vector machine (SVM) algorithm for pattern recognition 
where the root mean square (RMS) features and cepstrum coefficients (CC) features of the EMG signals were analyzed. 
The effectiveness of the approach was verified with a test for the classification of six tongue motions conducted 
with a group of five healthy adult volunteer subjects who had normal motor tongue functions. Results showed that 
the system classified all six tongue motions with high accuracy of 95.1 ± 1.9 %. The proposed method for control 
of assistive devices was evaluated using a test in which a computer simulation model of an electric wheelchair was 
controlled using six tongue motions. This interface system, which weighs only 13.6 g and which has a simple appear-
ance, requires no installation of any sensor into the mouth cavity. Therefore, it does not hinder user activities such as 
swallowing, chewing, or talking. The number of tongue motions is sufficient for the control of most assistive devices.
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Background
A tongue is an intra-oral locomotorium that can be 
moved quickly and precisely according to one’s own will. 
Anyone can set their own tongue position precisely and 
can smoothly change the magnitude of the force imposed 
on the teeth or palate. In fact, tongue motor functions are 
usually preserved even in people with cervical spinal cord 
damage. Various studies have demonstrated that people 
with a high level of movement paralysis can use tongue 
motions to control home appliances such as a PCs and 
electric wheelchairs [1, 2].

An interface system based on a small joystick oper-
ated by the tongue has been presented in the literature 
[3]. The joystick is fixed in a suitable position via a spe-
cial arm mount. The application of such an interface 

is limited to people with sufficient head motion that is 
able to reach the joystick. The same design might hin-
der conversation, eating, and drinking because a part of 
the joystick is located in the mouth cavity during use. In 
addition, such a solution might allow flow of excess saliva 
out of the mouth.

Numerous studies have examined control interfaces 
containing an artificial palate with buttons activated by 
the tongue tip [4–6]. In other solutions, a few pairs of 
light emitting diodes and photodiodes are mounted on 
an artificial palate to detect the tongue position [7, 8]. By 
changing the tongue position and thereby activating dif-
ferent sensors, the user sets control commands. A ben-
efit of such solutions is that the tongue interface device 
remains hidden to others (intra-oral interface). In addi-
tion, the number of sensors and their location on the arti-
ficial palate can be customized easily. However, because 
the artificial palate must remain in the mouth cavity for 
prolonged periods of time, such a design might require 
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additional efforts for maintaining oral hygiene and might 
entail various difficulties related to talking and eating.

Some recent studies present solutions that consist of a 
small magnet or a piece of ferromagnetic material attached 
to the tongue tip via gluing or piercing, and a sensor array 
that detects the tongue tip position [9–13]. Sensor systems 
that include a small permanent magnet fixed to the tongue 
tip and an array of magnetic sensors have been presented 
in the literature [9–11]. Some earlier reports introduced a 
tongue interface that includes an air-cored coil with induct-
ance changed by a small ferromagnetic stud attached to 
the tongue [12, 13]. Although such an approach is a simple 
interface solutions, the (ferro) magnetic stud on the tongue 
tip might cause some inconvenience to users.

The electromyography (EMG) signals created by skel-
etal muscles have been used for many years in human 
movement studies and for control of prostheses [14–26]. 
Our earlier study specifically addressed the potential of 
EMG signals and explored the viability of a tongue inter-
face based on surface EMG signals detected at the under-
side of the jaw [27]. The initial interface system consisted 
of nine single-surface electrodes attached on the under-
side of the jaw and connected via multiple lead wires. 
The proposed tongue interface, which is based entirely 
on analysis of extra-oral EMG signals, requires no inser-
tion of a palatal plate or a joystick in the mouth, attach-
ment of a magnet or ferromagnetic studs to the tongue, 
or physical contact of the tongue with any sensor. An 
artificial neural network (ANN) with three layers of neu-
rons (input, hidden and output) was used as the motion 
classifier. During the ANN training stage, three thin-film 
force sensors were installed on an upper jaw mouthpiece 
to deliver training data for voluntary tongue motions 
of three types: right, left, and forward. After this initial 
experiment, a new experiment was conducted for clas-
sification of the same voluntary motions without using 
signals from force sensors [28]. These initial experi-
ments demonstrated that the tongue motions are classi-
fiable from the EMG signals of the suprahyoid muscles. 
They have some potential for use in control interfaces. 
However, the initial interface system classified only a 
small number of tongue motions. Additionally, ANN-
based classifiers are well known to have a few important 
shortcomings: long learning time, local optimal solution 
depending on the initial value of parameters, and com-
plicated procedures for selection of the number of neu-
rons in the hidden layer. Furthermore, the initial sensor 
module consists of single electrodes and wires, which 
can pose severe difficulties. For practical application, the 
initial interface system required further improvement in 
few main directions: increased number of classified vol-
untary tongue motions, improvement of the classification 
accuracy, and redesign of the electrode module.

This paper proposes a novel tongue interface based 
on classification of the tongue motions from surface 
EMG signals of the suprahyoid muscles detectable at the 
underside of the jaw. The interface allows classification of 
six tongue motions, which are sufficient for the control of 
PCs and electric wheelchairs. The new system was evalu-
ated using a computer simulation experiment to assess 
control of an electric wheelchair.

EMG‑based tongue interface
EMG measurement approach
Tongue motions are produced by the coordinated actions 
of intrinsic muscles, which control tongue posture and 
tongue tip position, and extrinsic muscles, which con-
trol tongue protrusion and retraction [29, 30]. The EMG 
activity of the lingual muscles has been studied using 
tungsten microelectrodes and hook-wire electrodes [31] 
and surface electrodes [32] placed within the oral cav-
ity. However, intra-oral electrodes are unsuitable for the 
practical control of assistive devices.

The EMG signals of the suprahyoid muscles are detect-
able via electrodes placed on the skin of the underside of 
the jaw [33–35]. The suprahyoid muscles comprise sev-
eral muscle groups such as digastric muscles, stylohyoid 
muscles, mylohyoid muscles, and geniohyoid muscles, 
as presented in Fig.  1 [29, 30]. The suprahyoid muscles 
control the position of the hyoid according to the direc-
tion, position, and force of the tongue tip. Therefore, 
they contain sufficient information about the performed 
tongue motions. However, the suprahyoid muscles also 
contribute to motions that are unrelated to the tongue 
position. Such motions produce EMG signals when such 
motions are performed. For example, suprahyoid muscles 
help jaw-opening by pulling the mandible down when 
the hyoid position is fixed by the infrahyoid muscles. 
They also pull the hyoid up to assist swallowing when 
the mandible position is fixed to the muscles used for 
mastication. A great challenge to the design of a reliable 
tongue interface is the identification and suppression of 
EMG signals that do not originate from voluntary tongue 
motions. That difficulty cannot be resolved merely by 
electrode positioning because measured EMG signals are 
always composed of several signals from different mus-
cles around the electrode.

In this study, the EMG signals of the suprahyoid muscles 
are measured at multiple points of the skin using a multi-
electrode array. The multi-electrode approach makes the 
interface system less sensitive to eventual positioning 
errors of the electrode unit. Moreover, it enables people 
with little experience or little knowledge of EMG meas-
urement to apply the sensor. Current research was based 
on initial experiments conducted for the classification of 
tongue motions from the EMG signals patterns [27, 28].
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Sensor module and signal pre‑processing
The electrode module was designed as a thin flexible 
boomerang-shaped patch attached to the underside of 
the jaw (Fig.  2). The prototype sensor dimensions were 
decided by considering the average size of the lower jaw 
and curvature near the lower jaw and neck of the sub-
jects in the tests (see “Experiments and data acquisition” 
section below). The sensor was designed to cover the 
entire jaw. The number of the electrodes was determined 
experimentally. The electrodes were positioned on equal 
inter-electrode distances. The interface assembly, which 
consisted of 22 active electrodes shaped as φ2 × 2.5 mm 

pure silver rods, was positioned at the inter-electrode 
distance of 12.5  mm on a polyimide film. The interface 
unit was 50.0-mm-long and 87.5-mm-wide. The thick-
ness of the entire substrate including the reinforcement 
film was 0.3 mm. The electrode tips were shaped as hemi-
spheres to facilitate the skin contact. Voltage follower cir-
cuits were incorporated into the same interface mount to 
reduce the output impedance. The electrode base thick-
ness was 1.7 mm. For electric insulation of the electronic 
parts, both sides of the substrate were covered with a 
layer of silicon. The interface system was only 13.6 g. For 
the experiments, the interface module was adhered to 
the underside of the jaw of the subject. A ground elec-
trode and an active common electrode were connected 
respectively to the left and right earlobes via ear clips 
(Fig.  2c). The electric potential between each electrode 
and the active common electrode was amplified using a 
separate differential amplifier. The gain of the differential 
amplifiers was set to 2052. A band-pass filter with a pass-
band from 16 to 440 Hz bandwidth was used to remove 
the direct current component and high-frequency noise 
superimposed on the EMG signals. The EMG signals of 
all 22 EMG channels were digitized by a 16 bit analog-
to-digital converter (USB-6218; National Instruments 
Corp.). In general, the EMG signal frequency range is 
0–1000 Hz. Its usable energy is limited to 0–500 Hz [36]. 
Therefore, the sampling rate was set to 2000 Hz in com-
pliance with the Nyquist theorem.

Classification of tongue motions
Figure  3 portrays the tongue motion classification pro-
cedure. It comprises the EMG measurement, feature 
extraction, and motion classification.

Feature extraction
The feature extraction process was based on the over-
lapped windowing technique proposed by Englehart et al. 
[37]. It allows faster system response. The EMG signals 
measured from all 22 channels were segmented for fea-
ture extraction into windows consisting of 256 sam-
ples, as portrayed in Fig.  4. The length of each window 
was 128 ms. The next sampling segment slides over the 
current segment with an increment time of 16  ms. For 
composition of the feature vector, the root mean square 
(RMS) and the cepstrum coefficients (CC) of the EMG 
signals were calculated for each window. The RMS fea-
tures are characteristics of a time domain. The CC fea-
tures are characteristics of the frequency domain [28, 
38, 39]. Cepstrum analysis techniques have been used 
for many years for speech recognition because of their 
fast response and accurate results. Some recent studies 
have demonstrated that the techniques are useful also for 
motion classification based on EMG signals [39–41].
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Fig. 1  Structure of suprahyoid muscles

a surface view                                  b rear view 

c positioning of the electrodes

d schematic view of the position of the pin electrodes 

0.
5 

m
V

 

1 sec 

Voltage follower circuit 

12.5 

12
.5

 

50
.0

 

87.5 

2.
5 

2.0 

(mm) 

Fig. 2  22-channel active electrode



Page 4 of 11Sasaki et al. Robomech J  (2016) 3:9 

The RMS features provide information related to the 
amplitude of the EMG signals. Let us denote the EMG sig-
nals of the l-th electrode in the n-th sample of the p-th anal-
ysis window as EMGl, n(p) (n = 0, …, N − 1; l = 1, …, L), 
where N is the number of samples in one analysis window 
(N = 256), and L is the number of electrodes (L = 22). The 
RMS features can be expressed as the following equation:

The equation above is useful for calculation of the RMS 
features of all channels.

To calculate the CC features, the Hanning window pro-
cedure was applied to each analysis window of the EMG 
signals. The Fourier transform Xl

k(p) (k = 0, …, N − 1) of 
EMGl, n(p) can be expressed as shown below.

The CC features CCl
n(p) are calculated from the follow-

ing equation.
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Cepstrum analysis enables separation of the power 
spectrum of the EMG signals into a smooth component 
(spectral envelope) and a fine fluctuation component (fine 
structure). Low-order cepstrum coefficients include infor-
mation about the spectral envelope whereas the high-
order coefficients include fine structure information. The 
low-order coefficients were calculated using formula (3) 
and by varying n from n = 0 to n = W − 1. Here, W is a 
CC feature parameter (order of the cepstrum coefficients).

The feature vector x(p) for classifying tongue motions 
can be expressed as

where the dimension of the feature vector x(p) is 
L(1 + W).

Motion classification
For this study, the support vector machine (SVM) classi-
fier was used to classify tongue motions. The SVM classi-
fier has the following benefits for this classification:

–– The SVM classifier offers excellent recognition perfor-
mance.

–  – SVM has high generalization capability because it 
applies a maximum-margin classification function.

–  – It converges to a global optimal solution and therefore 
does not fall into a local optimum solution.

–– It has extremely short learning time because of the 
simple procedures used for calculation of the hyperpa-
rameters used for training.

SVM is a method for classification of an unknown fea-
ture vector x(p) (hereinafter designated as x) into two 
classes [42]. The decision function is

(4)

x(p) = (RMS1(p), . . . ,RMSL(p),

CC0
1 (p), . . . ,CC

W−1
1 (p), . . . ,

CC0
L(p), . . . ,CC

W−1
L (p))T
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where D denotes the number of training samples, yi signi-
fies the class label that corresponds to the i-th training 
sample x, λi is a Lagrangian undetermined multiplier, b 
is a bias term, and K (xi, x) denotes a kernel function. For 
this study, the radial basis function (RBF) was selected 
as the kernel function to map the input data in a high 
dimensional feature space. The RBF kernel is expressed as

where γ is a kernel parameter. The Lagrangian undeter-
mined multiplier λi in the decision function is derived by 
solving the following equation (quadratic programming).

The SVM classification performance depends on 
the selection of the kernel parameter γ and the penalty 
parameter C. The optimal combination of γ and Ccan be 
obtained using a grid search.

Usually, the SVM classifier is used for classification of 
features into two classes. In this study, the SVM algo-
rithm was extended to multi-class classification using 
the one-against-one method [43]. For the classification 
of M classes tongue motions, M(M − 1)/2 decision func-
tions are constructed initially for all combinations of 
these M classes. The feature vector x is classified against 
each decision function. The final decision on the class is 
obtained by majority vote.

Experiments and data acquisition
Subjects
This investigation examined five healthy adult male 
subjects (22.2  ±  1.3  years old, 169.7  ±  7.4  cm tall, 
61.0 ± 11.3 kg weight) who were free of musculoskeletal 
deficits and neurological impairment and who had nor-
mal tongue motor functions. Approval for the tests was 
obtained in advance by the Ethical Review Board of Iwate 
University. Before the start of the tests, the study objec-
tive, experimental protocol and risks were explained to 
each subject. Written consent was received from each.

Experimental protocol
First, the skin surface of the underside of the jaw was 
cleaned with alcohol and electrode paste (Elefix; Nihon 
Kohden Corp.) was applied to reduce the skin-electrode 
impedance. The 22-channel active electrode was adhered 
to the underside of the subject’s jaw using film dress-
ing (CATHEREEPLUS; Nichiban Co. Ltd.). A ground 

(6)K (xi, x) = exp(−γ||xi − x||2)
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D
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(8)subject to

D
∑

i=1
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electrode and an active common electrode were attached 
on the left and right earlobe of the subject using ear clips.

The tongue motion set included five tongue motions 
(right, left, up, down, and forward) performed with 
a closed mouth and a saliva swallowing (Fig.  5). Dur-
ing these motions, subjects were asked to position their 
tongue tips sequentially in the maxillary right second 
molar tooth, the maxillary left second molar tooth, the 
hard palate, the floor of the mouth, and near the maxil-
lary central incisor. Saliva swallowing is an unintentional 
action that is repeated frequently. The saliva swallowing 
was included in tests to evaluating its effects on tongue 
motion classification. In the experiment, each tongue 
motion was executed for 2  s at a subject’s comfortable 
speed. A resting period of 2  s was given to the subject 
before the start of the next motion. Consequently, all six 
motions in the set were completed for 22 s. Each subject 
was asked to perform the motion set 14 times. The EMG 
signals during each test were recorded. As a result, 14 
datasets were produced for each subject.

Data analysis
Matlab (R2013a; The MathWorks Inc.) was used for data 
analysis. The SVM classification algorithm was designed 
using an SVM library: LIBSVM [44]. The programs 
were executed on a PC (Windows 7 64-bit OS, i7-3770 
CPU/3.4 GHz, 16 GB RAM).

To justify the selection of the kernel function, it was 
confirmed that the RBF kernel matrix calculated from 
the first four datasets is a symmetric, positive semi-def-
inite matrix (i.e., all eigenvalues of the kernel matrix are 
non-negative). Then the datasets were used as training 
data of the SVM. The remaining ten datasets were used 
for tongue motion classification. The feature vector x for 
tongue motion classification was defined according to 
Eq. (4). The values of the RMS features and CC features 
were calculated, respectively, according to Eq.  (1) and 
Eq. (3). The class labels yi representing the type of motion 
in Eq. (5) were obtained using threshold triggering of the 
EMG signals [45]. The relation between the composition 
of the feature vector and its classification accuracy was 
evaluated by comparing the classification results when 
the CC feature parameter W was varied from 0 to 10. For 
simplicity in these analyses, W =  0 expresses the situa-
tion when the CC features are not included in the feature 
vector.

Right           Left             Up              Down           Forward       Swallowing 

Fig. 5  Definition of the tongue motions included in the tests
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As explained in the section describing “Motion clas-
sification”, the SVM classification performance depends 
on selection of kernel parameter γ and penalty param-
eter C. The optimal combination of γ and C was ascer-
tained using a grid search within the training data. 
The search included 96 combinations of γ and C for 
γ = {2−10, 2−9, . . . , 21} and C= {21, 22, . . . , 28}. The 
combination with the highest classification rate was 
defined using fivefold cross validation. Results showed 
that the optimum values of γ and C differ for each sub-
ject. After training of the SVM with the optimized hyper-
parameters for γ and C, motion classification of the test 
data was performed. The predicted class was replaced 
with a “neutral” tongue position when all EMG signals 
are under the threshold level (i.e., relaxed state). Next, 
a majority voting technique was applied to reduce the 
effect of misclassification. Majority voting was applied to 
a moving window composed of 20 frames that included 
the present frame and the prior 19 frames. Classification 
of the tongue motion was determined from the class with 
the largest number of wins.

The classification accuracy (CA) of the tongue motions 
was evaluated using the following equation.

Results
Effect of feature parameter selection on classification 
accuracy
The average classification accuracy and the standard devi-
ation of the classification accuracy for all five subjects are 
presented in Fig.  6. Results reveal the relation between 
the feature vector and classification accuracy. In cases 
where the feature vector was composed of RMS features 
only (W =  0), the classification accuracy of the tongue 
motions was 84.1  ±  1.5  %. The classification accuracy 

(9)CA =
number of correct feature vectors

total number of feature vectors
× 100 [%]

increased substantially when the CC features were added 
to the feature vector (W =  1, …, 10). The classification 
accuracy exceeded 95  % and remained almost constant 
when the CC feature parameter was W = 5 or higher. The 
classification accuracy for W = 5 was 95.1 ± 1.9 %. For 
W = 10, the classification accuracy was 95.1 ± 1.3 %. No 
significant difference was found between the classifica-
tion accuracies calculated with W = 5 and W = 10.

The dimension of the feature vector x for tongue 
motion classification was set to L(1 + W) (see Eq.  (4)). 
Because the computational complexity increases sig-
nificantly for greater values of W, the smallest possible 
W that gives comparable classification accuracy should 
be used. As explained above, no significant difference 
was found between the classification results with W = 5 
and W  =  10, which suggests that satisfying classifica-
tion results are obtainable with a feature vector based 
on W = 5. For that reason, a more detailed examination 
of the classification results is given here for the case in 
which the CC feature parameter was selected as W = 5.

Tongue motion classification accuracy
Table 1 presents classification results for all five subjects. 
The lowest total classification accuracy was 91.9  % (for 
subject A) and the highest total classification accuracy 
was 96.7 % (for subject B). The average total classification 
accuracy for all subjects was 95.1 %. Analysis of the clas-
sification results for the separate tongue motions demon-
strates that the “left” tongue motion was recognized with 
the highest classification accuracy (97.6 %). The classifica-
tion accuracy for the “down” tongue motion was slightly 
lower (96.7  %), followed by results for “saliva swallow-
ing” (95.3 %), “right” tongue motion (95.0 %), “up” tongue 
motion (94.5 %), and “forward” tongue motion (91.4 %). 
Table  2 presents details of the classification errors. The 
“forward” tongue motions were misclassified as “up”, 
“down”, and “saliva swallowing”. The “up” tongue motion 
has the second lowest classification accuracy. Frequently, 
it has been misclassified as “right” tongue motion.

Short signals at the start and the end of the main 
motion were often misclassified. By applying majority 
voting technique, the number of these misclassifications 
was reduced; 1.0  % of all motions were misclassified as 
a “neutral” tongue position. However, misclassification 
as a “neutral” tongue position is less important because 
the “neutral” tongue position is useful as a stop command 
when the assistive device is controlled by the developed 
interface. Misclassification of other motions as a “neu-
tral” tongue position cannot create dangerous situations. 
It will merely cause the controlled device to stop. Overall, 
the misclassification errors that might affect the opera-
tion of the controlled assistive devices were estimated 
from the total classification accuracy as about 3.9 %.
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Computer simulation of wheelchair control
A computer simulation model of an electric wheelchair 
was developed to evaluate the applicability of the devel-
oped tongue interface to control assistive devices. The 
wheelchair model was controlled virtually by operation 
commands generated from a confusion matrix presented 
in Table 2. The error of the commands was set to occur 
according to the possibility in the confusion matrix. In 
other words, this is a Monte Carlo method. The error 
timing was determined using a random number with a 
uniform probability distribution. The virtual trajectory of 
the wheelchair’s center of gravity was used as an indica-
tor to evaluate the effects of misclassification errors on 
the wheelchair operability.

Simulation model of an electric wheelchair
Figure 7 portrays a simplified model of the electric wheel-
chair. The angle θ and the center of gravity position PG 
(XG, YG) of an electric wheelchair are defined using the 
following equations.

(10)θ(t) =
1

T

∫ t

0
(Rrωr(t)− Rlωl(t))dt

(11)XG(t) =
1

2

∫ t

0
(Rrωr(t)+ Rlωl(t)) cos θ(t)dt

Therein, Rr and Rl respectively denote the radii of the 
right and left wheel. ωr(t) and ωl(t) respectively denote 
the angular velocity of the right and the left wheel. T 
is the distance between the right and left wheels. For 
the wheelchair model, wheels with radius 165  mm 
were selected. The distance between the wheels was 
530 mm.

The maximum velocity of the electric wheelchair model 
Vmax was set to 4 km/h. The model is based on a trapezoi-
dal model of acceleration and deceleration. The accelera-
tion time Ta and the deceleration time Td were set to 1 s. 
In this simulation, a new operation command is sent to 
the virtual wheelchair every Ti = 16 ms because, in the 
tongue motion classification experiment, the EMG sig-
nals were classified at 16 ms intervals (see Fig. 4). There-
fore, velocity commands are sent to the right and the left 
wheel every 16  ms. These commands are based on the 
rules presented in Table  3. The wheel velocities Rrωr(t) 
and Rlωl(t) are defined by the following equations.

(12)YG(t) =
1

2

∫ t

0
(Rrωr(t)+ Rlωl(t)) sin θ(t)dt

(13)Rrωr(t) = VmaxSr(t)Ti

/

Ta

(14)Rlωl(t) = VmaxSl(t)Ti

/

Ta

Table 1  Classification accuracy of tongue motions

Subject Right Left Up Down Forward Saliva swallowing Total

A 96.1 93.8 84.9 98.3 88.3 90.1 91.9

B 94.1 97.8 97.4 95.8 96.4 98.9 96.7

C 99.5 98.8 97.6 99.9 90.0 92.9 96.4

D 89.1 100 96.0 92.4 95.4 96.2 94.9

E 96.2 97.8 96.5 97.2 87.0 98.4 95.5

Mean 95.0 97.6 94.5 96.7 91.4 95.3 95.1

Table 2  Confusion matrix for six tongue motions

Estimated class

Right Left Up Down Forward Saliva swallowing Neutral

Actual class

Right 95.0 0.1 1.6 0.4 2.1 0.0 0.8

Left 1.2 97.6 0.1 0.2 0.0 0.0 0.9

Up 2.6 0.4 94.5 0.4 0.7 0.2 1.2

Down 0.0 0.0 0.7 96.7 1.9 0.3 0.4

Forward 0.4 0.0 2.2 3.4 91.4 1.2 1.4

Saliva swallowing 0.2 0.0 0.9 0.3 2.2 95.3 1.1
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Therein, Sr(t) and Sl(t) respectively represent the com-
mands sent to the right and the left wheel in sequential 
moments of time. Sr(t) and Sl(t) are defined as follows.

Linking tongue motions with commands for control of the 
wheelchair model
Commands for the wheelchair model operation are pre-
sented in Table 4. They are based on the confusion matrix 
of tongue motions, as shown in Table  2. Initially, the 
“Brake” command is set via the “neutral” tongue position. 

(15)−Ta

/

Ti ≤ Sr(t) ≤ Ta

/

Ti

(16)−Ta

/

Ti ≤ Sl(t) ≤ Ta

/

Ti

It is assumed that the “Brake” command is sent to the 
wheelchair when all EMG signals are under the threshold 
level (i.e., relaxed state). The “Brake” command causes the 
wheelchair to decelerate and stop. The “Forward” com-
mand was linked with the “down” tongue motion because 
the probability for misclassification of the “down” tongue 
motion as “right” or “left” is nearly zero in the confusion 
matrix. “Right” and “left” tongue motions were used, 
respectively, as commands for turning of the wheelchair 
model to the right and left. Reverse wheelchair move-
ment (“back” command) is initiated by “forward” tongue 
motion.

The classification accuracy of “forward” tongue motion 
was lower than that of “up” tongue motion. However, 
the rate of misclassification of “forward” tongue motion 
as “right” tongue motion is much lower (0.4 %) than that 
of “up” tongue motion (2.6  %). Its characteristic means 
that “forward” tongue motion ensures the straight driv-
ing performance. In addition, although “forward” tongue 
motion is misclassified as “down” tongue motion as about 
3.4 %, it does not affect the straight driving performance 
so much because this misclassification reduces the driv-
ing velocity while moving backward.

The remaining “saliva swallowing” and “up” tongue 
motions were defined as no command.

The driving test consisted of six tasks:

E1	� Driving the wheelchair forward 5 m
E2	� Driving the wheelchair backward 5 m
E3	� Turning the wheelchair 360° to the right
E4	� Turning the wheelchair 360° to the left
E5	� Swallowing saliva while the wheelchair model 

is stopped
E6	� Swallowing saliva while the wheelchair model 

is moving straight at maximum velocity

The saliva swallowing times in tests E5 and E6 were set 
to 1 s.

In this situation, the 100 patterns of velocity commands 
of right and left wheel Sr, Sl considering that the rate of 
misclassification as shown in Table 2 was generated using 
a random function. Then, these resultant trajectories 
were compared with the ideal trajectory, which was cal-
culated as a classification accuracy of all tongue motions 
is 100 %.

Simulation results
The simulation results of the angle θ and the center of 
gravity position PG (XG, YG) of an electric wheelchair are 
presented in Fig. 7. In addition, the differences between 
the ideal trajectory and the trajectory including the effect 
of misclassification are presented in Fig. 8.

Fig. 7  Simplified model of an electric wheelchair

Table 3  Change amount of  velocity commands for  right 
and left wheel

Command Sr(t) Sl(t)

Forward +1 +1

Back −1 −1

Right rotation −1 +1

Left rotation +1 −1

Brake
{

+1 if Rrωr(t) < 0

−1 if Rrωr(t) > 0

{

+1 if Rlωl(t) < 0

−1 if Rlωl(t) > 0

None +0 +0

Table 4  Definition of operation commands

Operation commands Tongue motions

Forward Down

Back Forward

Right rotation Right

Left rotation Left

Brake Neutral

None Saliva swallowing, up
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In test E1, both the angle θ and the driving trajectory 
in y-direction YG were, respectively, 0° and 0  mm. The 
difference between the maximum time required for 5 m 
moving of the wheelchair and the time for ideal trajec-
tory was only 40.5  ms. In test E2, the maximum devia-
tions of θ and YG for moving the wheelchair backward 
were, respectively, −1.2° and 99.4 mm. Because the dis-
tance of moving backward is about 1 m in daily life, the 
influence of these errors is believed to present no diffi-
culty. These results suggest that the straight driving per-
formance of an electric wheelchair using the proposed 
tongue interface is sufficient for practical use.

In test E3, maximum XG and YG while turning the 
wheelchair 360° to the right were, respectively, −8.2 and 
12.7 mm. In test E4, maximum XG and YG for turning to 
the left were, respectively, 1.6 and 2.3 mm. The deviation 
of the center of gravity position is slight, which suggests 
good turning performance.

In test E5, the respective variations of the θ, XG, and 
YG via swallowing saliva while stopping did not exceed 
−0.6°, −11.3 and 0.0 mm. In test E6, the respective maxi-
mum variations of θ and YG via swallowing saliva while 
moving straight with maximum velocity were −0.9° and 
−5.7  mm. Moreover, the driving velocity was reduced 

from 4.0 km/h of maximum velocity to 3.8 km/h. From 
these results, it was confirmed that the influence of saliva 
swallowing on wheelchair operation can be inhibited at 
most to 11.3 mm.

Discussion
The proposed interface, which has simple appearance, 
can be attached easily and quickly even by a non-expe-
rienced caregiver, as depicted in Fig.  2. The prototype 
tongue interface was extremely lightweight: just 13.6  g. 
Because the silicon insulation comprises about 60.7  % 
of the whole sensor mass, further reduction of the sen-
sor mass can be achieved using thinner silicon insulation 
sheets. Future studies will explore the optimal electrode 
unit size and the optimal number and location of elec-
trodes for different categories of individuals. Further 
improvement might include the development of wireless 
communication between the sensor and the computer.

Tongue motion classification is based on analysis of 
the EMG activity of the suprahyoid muscles, which con-
tribute not only voluntary tongue motions but also swal-
lowing motion. Therefore, classification must be done 
of the large number of voluntary tongue motions that 
might be used for controlling an electric wheelchair and 

With 100 % classification accuracy  With classification accuracy of proposed method (n=100) 

(E1) 

(E2)  

(E3)  

(E4) 

(E5)  

(E6) 

(E1) 

(E2)  

(E3)  

(E4) 

(E5)  

(E6) 

Driving trajectory of wheelchair’s COG                            Angle of wheelchair 

Fig. 8  Simulation results of an electric wheelchair
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a PC. Such classification is also necessary for the detec-
tion of involuntary motions to inhibit malfunctions of 
such assistive devices. This study achieved classification 
accuracy of 95.1 ±  1.9 % using SVM classifier with fea-
tures of time and frequency domains for five voluntary 
tongue motions and saliva swallowing. The voluntary 
tongue motions classified in this study were much more 
numerous than in our preliminary experiments. They are 
sufficiently numerous and diverse to control an electric 
wheelchair and a PC. Our future studies will emphasize 
further improvement of the tongue motion classifica-
tion accuracy by optimizing the parameters of classifica-
tion algorithms such as features and the SVM kernel. In 
addition, effects of the combination of classifiable tongue 
motions on the classification accuracy will be clarified.

Computer simulations of driving of an electric wheel-
chair were conducted to investigate the effectiveness 
of the proposed classification algorithm. The high per-
formance of straight driving was achieved by finding 
a voluntary tongue motion that is not misclassified as 
a “right” or “left” tongue motion from the confusion 
matrix (Table  2) and by matching this motion with the 
“forward” command of an electric wheelchair (Table  4). 
Saliva swallowing during wheelchair driving reduces the 
velocity slightly. Therefore, this malfunction by saliva 
swallowing affects driving performance only slightly. 
However, saliva swallowing while the wheelchair is stop-
ping made the wheelchair back up slightly. To provide a 
safety margin, some improvement of electric wheelchair 
control methods must be conducted as future work. As 
described above, electric wheelchair operation based on 
the proposed tongue interface has been demonstrated. 
Future studies will be conducted to evaluate the effects of 
yawning, talking, drinking, tongue motion speed, muscle 
fatigue, and head motion on the classification accuracy. 
The effects of small tongue positioning errors on the clas-
sification accuracy of the system will also be assessed. 
The usability of the tongue interface will be evaluated via 
new experiments using actual electric wheelchairs, PCs, 
and other assistive devices, and with testing of people 
with disabilities.

This study tested the design concept of the new inter-
face through experimentation with five healthy adult 
male subjects. The results were sufficient to verify the 
viability of the concept, but a new detailed study will be 
necessary for evaluation of the developed interface when 
used by different categories of users. Such a new study 
will specifically examine the acceptance of the new inter-
face by various users.

Conclusions
This study was conducted to develop and test a novel 
tongue interface based on the classification of tongue 

motions from surface EMG signals of the suprahyoid 
muscles detected at the underside of the jaw. The EMG 
signals of the suprahyoid muscles were measured via 22 
active surface electrodes mounted on a special flexible 
boomerang-shaped base. The tongue motions were clas-
sified from RMS features and CC features of the EMG 
signals using an SVM classifier. Because the developed 
interface and this approach require no installation of any 
sensor into the mouth cavity, the system does not hinder 
the user’s other activities such as eating, chewing, and 
talking. To verify the effectiveness of the tongue interface, 
an experiment was conducted with five healthy adult 
male subjects who had normal motor tongue functions. 
Results showed that the six tongue motions (i.e., five vol-
untary tongue motions and saliva swallowing) were clas-
sified with high accuracy of 95.1 ± 1.9 %. In addition, the 
potential of the proposed method was evaluated with a 
test whereby a computer simulation of an electric wheel-
chair was controlled using tongue commands. Results 
from the steering test demonstrated that the computer 
model was controlled precisely. The developed interface 
elaborates signals of sufficient number for the control 
of most assistive devices. This device is therefore use-
ful for people with a high degree of movement paralysis. 
The tongue control interface can be simplified for use by 
patients with moderate movement disorders.
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