7 research outputs found

    In Vitro Laser Ablation of Natural Marine Biofilms

    No full text
    We studied the efficiency of pulsed low-power laser irradiation of 532 nm from an Nd:YAG (neodymium-doped yttrium-aluminum-garnet) laser to remove marine biofilm developed on titanium and glass coupons. Natural biofilms with thicknesses of 79.4 ± 27.8 μm (titanium) and 107.4 ± 28.5 μm (glass) were completely disrupted by 30 s of laser irradiation (fluence, 0.1 J/cm(2)). Laser irradiation significantly reduced the number of diatoms and bacteria in the biofilm (paired t test; P < 0.05). The removal was better on titanium than on glass coupons

    Antibacterial Effect of Amino Acid-Silver Complex Loaded Montmorillonite Incorporated in Dental Acrylic Resin

    Get PDF
    Several dental materials contain silver for antibacterial effect, however the effect is relatively low. The reason for the lower antibacterial efficacy of silver is considered to be the fact that silver ions bind to chloride ions in saliva. To develop new effective silver antibacterial agents that can be useful in the mouth, we synthesized two novel amino acid (methionine or histidine)-silver complexes (Met or His-Ag) loaded with montmorillonite (Mont) and analyzed their antibacterial efficacy. At first the complexes were characterized using nuclear magnetic resonance (NMR), and amino acid-Ag complex-loaded Mont (amino acid-Ag-Mont) were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of these materials in dental acrylic resin was then investigated by bacterial growth measurement using a spectrophotometer. As controls, commercially available silver-loaded zeolite and silver-zirconium phosphate were also tested. Dental acrylic resin incorporating His-Ag-Mont strongly inhibited Streptococcus mutans growth. This was explained by the fact that His-Ag complex revealed the highest amounts of silver ions in the presence of chloride. The structure of the amino acid-Ag complexes affected the silver ion presence in chloride and the antibacterial efficacy. His-Ag-Mont might be used as antibacterial agents for dental materials

    Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite

    No full text
    Long-term anti-bacterial effect is a desired ability of any dental material in combating tooth caries as one of the most common and widespread persistent diseases today. Among several cationic quaternary ammonium compounds with antiseptic properties, cetylpyridinium chloride (CPC) is often used in mouthrinses and toothpastes. In this study, we incorporated CPC in a soft phyllosilicate mineral (clay), referred to as montmorillonite (Mont), to enable gradual CPC release with rechargeability. Besides measuring CPC release and recharge, we examined the anti-bacterial effect, cytotoxicity and bonding effectiveness of five experimental adhesive formulations, prepared by adding 1 and 3 wt% CPC_Mont, 3 wt% Mont (without CPC), and 1 and 3 wt% CPC (without Mont) to the commercial adhesive Clearfil S3 Bond ND Quick ('C-S3B'; Kuraray Noritake). Strong inhibition of Streptococcus mutans biofilm formation by CPC_Mont adhesives was confirmed by optical density and SEM. CPC release from CPC_Mont adhesives was higher and lasted longer than from CPC adhesives, while CPC_Mont adhesives could also be recharged with CPC upon immersion in 2 wt% CPC. In conclusion, CPC_Mont technology rendered adhesives anti-bacterial properties with recharge ability, this without reducing its bonding potential, neither increasing its cytotoxicity. STATEMENT OF SIGNIFICANCE: Dental caries is one of the most prevalent chronic diseases in the population worldwide and is the major cause of tooth loss. In this study, we developed cetylpyridinium chloride (CPC) loaded montmorillonite (CPC-Mont) with a long-term antibacterial efficacy to prevent caries. CPC is an antibacterial agent approved by FDA, used as an OTC drug and contained in oral hygiene aids. CPC-Mont was incorporated in a dental adhesive to gradually release CPC. CPC_Mont technology rendered adhesives anti-bacterial properties with rechargeability, this without reducing its bonding potential, neither increasing its cytotoxicity.status: publishe

    Alpha‐synuclein dynamics in induced pluripotent stem cell‐derived dopaminergic neurons from a Parkinson’s disease patient (PARK4) with SNCA triplication

    No full text
    Parkinson's disease (PD) is a neurodegenerative disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Lewy bodies (LBs), another histological hallmark of PD, are observed in patients with familial or sporadic PD. The therapeutic potential of reducing the accumulation of α‐synuclein, a major LB component, has been investigated, but it remains unknown whether the formation of LBs results in the loss of DA neurons. PARK4 patients exhibit multiplication of the α‐synuclein gene (SNCA) without any pathological mutations, but their symptoms develop relatively early. Therefore, study of PARK4 might help elucidate the mechanism of α‐synuclein aggregation. In this study, we investigated the dynamics of α‐synuclein during the early stage of immature DA neurons, which were differentiated from human‐induced pluripotent stem cells (hiPSCs) derived from either a PARK4 patient with SNCA triplication or a healthy donor. We observed increased α‐synuclein accumulation in PARK4 hiPSC‐derived DA neurons relative to those derived from healthy donor hiPSCs. Interestingly, α‐synuclein accumulation disappeared over time in the PARK4 patient‐derived DA neurons. Moreover, an SNCA‐specific antisense oligonucleotide could reduce α‐synuclein levels during the accumulation stage. These observations may help reveal the mechanisms that regulate α‐synuclein levels, which may consequently be useful in the development of new therapies for patients with sporadic or familial PD
    corecore