683 research outputs found

    Contribution of calcium-conducting channels to the transport of zinc ions.

    Get PDF
    International audienceZinc (Zn) is a vital nutrient participating in a myriad of biological processes. The mechanisms controlling its transport through the plasma membrane are far from being completely understood. Two families of eukaryotic zinc transporters are known to date: the Zip (SLC39) and ZnT (SLC30) proteins. In addition, some types of plasmalemmal calcium (Ca)-conducting channels are implied in the cellular uptake of zinc. These ion channels are currently described as systems dedicated to the transport of Ca (and, to some extent, sodium (Na) ions). However, a growing body of evidence supports the view that some of them can also function as pathways for Zn transport. For instance, voltage-gated Ca channels and some types of glutamate-gated receptors have long been known to allow the entry of Zn. More recently, members of the TRP superfamily, another type of Ca-conducting channels, have been shown to permit the uptake of Zn into eukaryotic cells. The aim of this review article is to present the current knowledge supporting the notion that Ca-conducting channels take part in the plasmalemmal transport of Zn

    Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo

    Get PDF
    Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique to measure the cytosolic Ca2+ concentration under conditions as natural as possible. The calcium indicator dyes Oregon Green 1, 2, or 5N (Molecular Probes, Inc., Eugene, OR) were iontophoretically injected via an intracellular electrode into a photoreceptor cell in the intact eye; the same electrode was also used to measure the membrane potential. The blue-induced green fluorescence of these dyes could be monitored by making use of the optics of the facet lens and the rhabdomere waveguide. The use of the different Ca2+-sensitive dyes that possess different affinities for Ca2+ allowed the quantitative determination of the cytosolic Ca2+ concentration in the steady state. Determining the cytosolic Ca2+ concentration as a function of the adapting light intensity shows that the Ca2+ concentration is regulated in a graded fashion over the whole dynamic range where a photoreceptor cell can respond to light. When a photoreceptor is adapted to bright light, the cytosolic Ca2+ concentration reaches stable values higher than 10 mu M. The data are consistent with the hypothesis that the logarithm of the increase in cytosolic Ca2+ concentration is linear with the logarithm of the light intensity. From the estimated values of the cytosolic Ca2+ concentration, we conclude that the Ca2+-buffering capacity is limited. The percentage of the Ca2+ influx that is buffered gradually decreases with increasing Ca2+ concentrations; at cytosolic Ca2+ concentration levels above 10 mu M, buffering becomes minimal

    Die Sprache der Trauernden - eine transkulturelle Korpusanalyse

    Get PDF
    Zweitveröffentlichun

    Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes)

    Get PDF
    BACKGROUND: Anther smuts of the basidiomycetous genus Microbotryum on Caryophyllaceae are important model organisms for many biological disciplines. Members of Microbotryum are most commonly found parasitizing the anthers of host plants in the family Caryophyllaceae, however they can also be found on the anthers of members of the Dipsacaceae, Lamiaceae, Lentibulariaceae, and Portulacaceae. Additionally, some members of Microbotryum can be found infecting other organs of mainly Polygonaceae hosts. Based on ITS nrDNA sequences of members of almost all genera in Microbotryaceae, this study aims to resolve the phylogeny of the anther smuts and their relationship to the other members of the family of plant parasites. A multiple analysis strategy was used to correct for the effects of different equally possible ITS sequence alignments on the phylogenetic outcome, which appears to have been neglected in previous studies. RESULTS: The genera of Microbotryaceae were not clearly resolved, but alignment-independent moderate bootstrap support was achieved for a clade containing the majority of the Microbotryum species. The anther parasites appeared in two different well-supported lineages whose interrelationship remained unresolved. Whereas bootstrap support values for some clades were highly vulnerable to alignment conditions, other clades were more robustly supported. The differences in support between the different alignments were much larger than between the phylogenetic optimality criteria applied (maximum parsimony and maximum likelihood). CONCLUSION: The study confirmed, based on a larger dataset than previous work, that the anther smuts on Caryophyllaceae are monophyletic and that there exists a native North American group that diverged from the European clade before the radiation of the European species. Also a second group of anther smuts was revealed, containing parasites on Dipsacaceae, Lamiaceae, and Lentibulariaceae. At least the majority of the parasites of Asteraceae appeared as a monophylum, but delimitations of some species in this group should be reconsidered. Parasitism on Polygonaceae is likely to be the ancestral state for the Microbotryaceae on Eudicot hosts

    The Language of Otaku – Analyzing the Japanese Internet story Train Man

    Get PDF
    Zweitveröffentlichun
    • …
    corecore