352 research outputs found

    Chronic Morphinism

    Get PDF
    n/

    Integrated Management of Land-use Systems under Systemic Risks and Food-(bio)energy-water-environmental Security Targets: A Stochastic Global Biosphere Management Model

    Get PDF
    Interdependencies among land-use systems resemble a complex network connected through demand–supply relations, and disruption of the network may catalyze systemic risks affecting food, energy, water, and environmental security (FEWES) worldwide. This paper describes the conceptual development, expansion, and practical application of a stochastic version of the Global Biosphere Management Model (GLOBIOM), a model that is used to assess competition for land use between agriculture, bioenergy, and forestry at regional and global scales. In the stochastic version of the model, systemic risks of various kinds are explicitly covered and can be analyzed and mitigated in all their interactions. While traditional deterministic scenario analysis produces sets of often contradictory outcomes, stochastic GLOBIOM explicitly derives robust decisions that leave the systems better off, independently of what scenario occurs. Stochastic GLOBIOM is formulated as a stochastic optimization model that is central for evaluating portfolios of robust interdependent decisions: ex ante strategic decisions (production allocation, storage capacities) and ex post adaptive (demand, trading, storage control) decisions. For example, the model is applied to the case of increased storage facilities, which can be viewed as catastrophe pools to buffer production shortfalls and fulfill regional and global FEWES requirements when extreme events occur. Expected shortfalls and storage capacities have a close relation with Value-at-Risk and Conditional Value-at-Risk risk measures. The Value of Stochastic Solutions is calculated to present the benefits of the stochastic over the deterministic model

    Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies

    Get PDF
    Achieving sustainable development requires the decoupling of natural resource use and environmental pressures from economic growth and improvements in living standards. G7 leaders and others have called for improved resource efficiency, along with inclusive economic growth and deep cuts in global greenhouse emissions. However, the outlooks for and interactions between global natural resource use, resource efficiency, economic growth and greenhouse emissions are not well understood. We use a novel multi-regional modeling framework to develop projections to 2050 under existing trends and three policy scenarios. We find that resource efficiency could provide pro-growth pro-environment policies with global benefits of USD $2.4 trillion in 2050, and ease the politics of shifting towards sustainability. Under existing trends, resource extraction is projected to increase 119% from 2015 to 2050, from 84 to 184 billion tonnes per annum, while greenhouse gas emissions increase 41%, both driven by the value of global economic activity more than doubling. Resource efficiency and greenhouse abatement slow the growth of global resource extraction, so that in 2050 it is up to 28% lower than in existing trends. Resource efficiency reduces greenhouse gas emissions by 15–20% in 2050, with global emissions falling to 63% below 2015 levels when combined with a 2 °C emissions pathway. In contrast to greenhouse abatement, resource efficiency boosts near-term economic growth. These economic gains more than offset the near-term costs of shifting to a 2 °C emissions pathway, resulting in emissions in 2050 well below current levels, slower growth in resource extractions, and faster economic growth

    The Net Global Effects of Alternative U.S. Biofuel Mandates

    Get PDF
    One of the declared objectives of U.S. biofuel policy is the reduction of greenhouse gas (GHG) emissions from fossil fuel combustion, but many studies have questioned whether such a reduction would actually occur and, if so, how large it would be. This report describes the global market, land use, GHG emissions, and nitrogen use impacts of the U.S. Renewable Fuel Standard (RFS2) and several alternative biofuel policy designs, which differ in terms of mandate magnitude and feedstock composition, over the 2010-2030 period

    Climate change induced transformations of agricultural systems: insights from a global model

    Get PDF
    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere's temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis
    • …
    corecore