463 research outputs found

    Speaker discrimination in multisource environments auralized in real rooms

    Get PDF
    With the recent development of audio in modern VR/AR systems and the increasing capability of synthesizing natural sound fields over headphones with head tracking, the question of the ability of our hearing system to discriminate multiple concurrent sound sources has become important again. We must understand how psychoacoustical and psychophysical limitations of the hearing system cope with novel technologies of virtual acoustics that can simulate an almost unlimited number of sound sources. Previous research has shown that the capacity of human hearing to discriminate a reference sound source is limited when there is background noise, a reverberant surrounding, or when other, disturbing sound sources simultaneously mask the reference source. A set of listening tests based on the cocktail-party effect was designed to determine the intelligibility of speech emitted by a reference sound source, with one to six disturbing sound sources simultaneously emitting speech from different directions around the listener. The tests were repeated in three test rooms with different acoustical properties, and two test signals were used: logatomes and regular spoken sen-tences with specific keywords. The results have revealed the changes in speech intelligibility scores in relation to the number of disturbing sources, their positions, and acoustical properties of test rooms

    Using Virtual Soundwalk Approach for Assessing Sound Art Soundscape Interventions in Public Spaces

    Get PDF
    This paper discusses the soundscape assessment approaches to soundscape interventions with musical features introduced to public spaces as permanent sound art, with a focus on the ISO 12913 series, Method A for data collection applied in a laboratory study. Three soundscape interventions in three cities are investigated. The virtual soundwalk is used to combine the benefits of the on-site and laboratory settings. Two measurement points per location were recorded—one at a position where the intervention was clearly perceptible, the other further away to serve as a baseline condition. The participants (N = 44) were exposed to acoustic environments (N = 6) recorded using the first-order Ambisonics microphone on-site and then reproduced via the second-order Ambisonics system in laboratory. A series of rank-based Kruskal–Wallis tests were performed on the results of the subjective responses. Results revealed a statistically significant positive effect on soundscape at two locations, and limitations related to sound source identification due to cultural factors and geometrical configuration of the public space at one location

    An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions

    Get PDF
    We present a new, easy, and elementary proof of Jensen's Theorem on the uniqueness of infinity harmonic functions. The idea is to pass to a finite difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added, proof simplifie

    Modeling the Location of the Forest Line in Northeast European Russia with Remotely Sensed Vegetation and GIS-Based Climate and Terrain Data

    Get PDF
    GIS-based data sets were used to analyze the structure of the forest line at the landscape level in the lowlands of the Usa River Basin, in northeast European Russia. Vegetation zones in the area range from taiga in the south to forest-tundra and tundra in the north. We constructed logistic regression models to predict forest location at spatial scales varying from 1 × 1 km to 25 × 25 km grid cells. Forest location was explained by July mean temperature, ground temperature (permafrost), yearly minimum temperature, and a Topographic Wetness Index (soil moisture conditions). According to the models, the forest line follows the +13.9°C mean July temperature isoline, whereas in other parts of the Arctic it usually is located between +10 to +12°C. It is hypothesized that the anomalously high temperature isoline for the forest line in Northeast European Russia is due to the inability of local ecotypes of spruce to grow on permafrost terrain. Observed patterns depend on spatial scale, as the relative significance of the explanatory variables varies between models implemented at different scales. Developed models indicate that with climate warming of 3°C by the end of the 21st century temperature would not limit forest advance anywhere in our study area

    Post-hoc analysis of two temporary acoustic shelters in London

    Get PDF
    The research focuses on two temporary pavilions designed as acoustic shelters in an urban open space: the Serpentine Gallery Pavilion built in the forecourt of the Serpentine Gallery in Kensington Gardens in 2011 and the Be Open Sound Portal pavilion built at Trafalgar Square in 2012, both heritage sites in London. Swiss architect Peter Zumthor designed the former pavilion, while the latter was designed by the English firm Arup. It was recognized that the same soundscape design model - an acoustic shelter - was applied in open spaces of a different aural context. Both were dismantled before the time of this research. With an aim to show the types of soundscape from which acoustic shelters in an urban open space could shield, monaural onsite measurements were performed in October 2015 to analyze aural context differences between the immediate surroundings of the two former pavilions. The difference is clearly visible in the frequency of sonic events, their spectral composition and average sound pressure levels

    High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering drugs and diet network (GOLDN): an interventional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postprandial lipemia (PPL) is likely a risk factor for cardiovascular disease but these changes have not been well described and characterized in a large cohort. We assessed acute changes in the size and concentration of total and subclasses of LDL, HDL, and VLDL particles in response to a high-fat meal. Participants (n = 1048) from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) Study who ingested a high-fat meal were included in this analysis. Lipids were measured at 0 hr (fasting), 3.5 hr, and 6 hr after a standardized fat meal. Particle size distributions were determined using nuclear magnetic resonance spectroscopy. Analyses were stratified by baseline triglycerides (normal vs. elevated) and gender. The effect of PPL on changes in lipoprotein subclasses was assessed using repeated measures ANOVA.</p> <p>Results</p> <p>Postprandially, LDL-C, HDL-C, VLDL-C, and triglycerides increased regardless of baseline triglyceride status, with the largest increases in VLDL-C and TG; however, those with elevated triglycerides demonstrated larger magnitude of response. Total LDL particle number decreased over the 6-hour time interval, mostly from a decrease in the number of small LDL particles. Similarly, total VLDL particle number decreased due to reductions in medium and small VLDL particles. Large VLDL particles and chylomicrons demonstrated the largest increase in concentration. HDL particles demonstrated minimal overall changes in total particle number.</p> <p>Conclusions</p> <p>We have characterized the changes in LDL and VLDL particle number, and their subclass patterns following a high-fat meal.</p

    Bright light decreases peripheral skin temperature in healthy men:A forced desynchrony study under dim and bright light (II)

    Get PDF
    Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design. The FD experiment was performed in dim light (DL, 6 lux) and bright white light (BL, 1300 lux) in 8 men in a semi-randomized within-subject design. A 4 × 18 h FD protocol (5 h sleep, 13 h wake) was applied, with continuous core body temperature (CBT) and skin temperature measurements at the forehead, clavicles, navel, palms, foot soles and toes. Skin temperature parameters indicated sleep-wake modulations as well as internal clock variations. All distal skin temperature parameters increased during sleep, when CBT decreased. Light significantly affected temperature levels during the wake phase, with decreased temperature measured at the forehead and toes and increased navel and clavicular skin temperatures. These effects persisted when the lights were turned off for sleep. Circadian amplitude of CBT and all skin temperature parameters decreased significantly during BL exposure. Circadian proximal skin temperatures cycled in phase with CBT, while distal skin temperatures cycled in anti-phase, confirming the idea that distal skin regions reflect heat dissipation and proximal regions approximate CBT. In general, we find that increased light intensity exposure may have decreased heat loss in humans, especially at times when the circadian system promotes sleep

    Bright light increases alertness and not cortisol in healthy men:A forced desynchrony study under dim and bright light (I)

    Get PDF
    Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such

    Bright light during wakefulness improves sleep quality in healthy men:A forced desynchrony study under dim and bright light (III)

    Get PDF
    Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness-5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep
    corecore