271 research outputs found

    Anderson localisation in steady states of microcavity polaritons

    Full text link
    We present an experimental signature of the Anderson localisation of microcavity polaritons, and provide a systematic study of the dependence on disorder strength. We reveal a controllable degree of localisation, as characterised by the inverse-participation ratio, by tuning the positional disorder of arrays of interacting mesas. This constitutes the realisation of disorder-induced localisation in a driven-dissipative system. In addition to being an ideal candidate for investigating localisation in this regime, microcavity polaritons hold promise for low-power, ultra-small devices and their localisation could be used as a resource in quantum memory and quantum information processing.Comment: 7 pages, 3 figure

    Temporally resolved second-order photon correlations of exciton-polariton Bose-Einstein condensate formation

    Get PDF
    Second-order time correlation measurements with a temporal resolution better than 3 ps were performed on a CdTe microcavity where spontaneous Bose-Einstein condensation is observed. After the laser pulse, the nonresonantly excited thermal polariton population relaxes into a coherent polariton condensate. Photon statistics of the light emitted by the microcavity evidences a clear phase transition from the thermal state to a coherent state, which occurs within 3.2 ps after the onset of stimulated scattering. Following this very fast transition, we show that the emission possesses a very high coherence that persists for more than 100 ps after the build-up of the condensate.Comment: 4 pages, 3 figure

    A low-complexity channel training method for efficient SVD beamforming over MIMO channels

    Get PDF
    Singular value decomposition (SVD) beamforming is an attractive tool for reducing the energy consumption of data transmissions in wireless sensor networks whose nodes are equipped with multiple antennas. However, this method is often not practical due to two important shortcomings: it requires channel state information at the transmitter and the computation of the SVD of the channel matrix is generally too complex. To deal with these issues, we propose a method for establishing an SVD beamforming link without requiring feedback of actual channel or SVD coefficients to the transmitter. Concretely, our method takes advantage of channel reciprocity and a power iteration algorithm (PIA) for determining the precoding and decoding singular vectors from received preamble sequences. A low-complexity version that performs no iterations is proposed and shown to have a signal-to-noise-ratio (SNR) loss within 1 dB of the bit error rate of SVD beamforming with least squares channel estimates. The low-complexity method significantly outperforms maximum ratio combining diversity and Alamouti coding. We also show that the computational cost of the proposed PIA-based method is less than the one of using the Golub–Reinsch algorithm for obtaining the SVD. The number of computations of the low-complexity version is an order of magnitude smaller than with Golub–Reinsch. This difference grows further with antenna array size

    Direct measure of the exciton formation in quantum wells from time resolved interband luminescence

    Get PDF
    We present the results of a detailed time resolved luminescence study carried out on a very high quality InGaAs quantum well sample where the contributions at the energy of the exciton and at the band edge can be clearly separated. We perform this experiment with a spectral resolution and a sensitivity of the set-up allowing to keep the observation of these two separate contributions over a broad range of times and densities. This allows us to directly evidence the exciton formation time, which depends on the density as expected from theory. We also evidence the dominant contribution of a minority of excitons to the luminescence signal, and the absence of thermodynamical equilibrium at low densities

    Periodic squeezing in a polariton Josephson junction

    Get PDF
    The use of a Kerr nonlinearity to generate squeezed light is a well-known way to surpass the quantum noise limit along a given field quadrature. Nevertheless, in the most common regime of weak nonlinearity, a single Kerr resonator is unable to provide the proper interrelation between the field amplitude and squeezing required to induce a sizable deviation from Poissonian statistics. We demonstrate experimentally that weakly coupled bosonic modes allow exploration of the interplay between squeezing and displacement, which can give rise to strong deviations from the Poissonian statistics. In particular, we report on the periodic bunching in a Josephson junction formed by two coupled exciton-polariton modes. Quantum modeling traces the bunching back to the presence of quadrature squeezing. Our results, linking the light statistics to squeezing, are a precursor to the study of nonclassical features in semiconductor microcavities and other weakly nonlinear bosonic systems.Comment: 6 pages, 4 figure

    Breast cancer: Pretreatment drug resistance parameters (GSH-system, ATase, P-glycoprotein) in tumor tissue and their correlation with clinical and prognostic characteristics

    Get PDF
    Background: The identification of new factors predicting relapse, outcome and response to systemic therapy in breast cancer is warranted. The measurement of biological markers such as drug resistance parameters (DRPs), which are part of the phenotype of malignant cells and contribute to resistance to anti-cancer drugs may be a possibility, which may ultimately lead to improvement of therapeutic results. Patients and methods: The level of glutathione (GSH), activities of glutathione-S-transferase (GST), glutathione-peroxidase (GPx), 06-alkylguanine-DNA-alkyltransferase (ATase), and P-glycoprotein (PGP) were measured in tumor and adjacent tumor free tissue samples from 89 consecutive, untreated females with breast cancer and correlated with clinical and prognostic factors. Early breast cancer (EBC) was diagnosed in 56 patients, 22 patients had locally advanced (LABC) and 11 patients metastatic breast cancer. Results: All DRPs showed significantly higher expression in tumor than in tumor free tissues. GPx was positively correlated with GST (r = 0.3, P = 0.0048) and with GSH (r = 0.5, P = 0.0001) in tumor as well as in normal tissue. GST activity was significantly higher in EBC than in LABC or metastatic breast cancer (P = 0.02). GSH level was significantly higher in grade I than in grade 2 or grade 3 tumors (P = 0.01). When clinical characteristics were related to the level of DRP, ‘high' GSH was associated with age >60 years (P = 0.01) in EBC, and with grade 1-2 tumors (P = 0.05) in LABC. No differences in OS were apparent between groups of ‘high' and ‘low' DRP-expression. However, the four-year estimated disease-free survival of EBC tended to be higher in patients with ‘high' GST (P = 0.10) and of LABC in patients with ‘high' GPx levels (P = 0.06). Conclusion: We conclude that ‘high' levels of DRP in tumor tissue of breast cancer patients are part of the initial phenotype of the malignant cells. Due to its high prevalence (83% in EBC, 100% in primarily metastatic breast cancer), PGP did not add to prognostic information. High levels of GSH, GST and and GPx were associated with favorable clinical characteristics and good prognosis, whereas low levels of GSH and GST activity were associated with more aggressive or more advanced diseas

    The crystalline units of the High Himalayas in the Lahul-Zanskar region (northwest India): metamorphic-tectonic history and geochronology of the collided and imbricated Indian plate

    Get PDF
    In the High Himalayan belt of northwest India, crustal thickening linked to Palaeogene collision between India and Eurasia has led to the formation of two main crystalline tectonic units separated by the syn-metamorphic Miyar Thrust: the High Himalayan Crystallines sensu stricto (HHC) at the bottom, and the Kade Unit at the top. These units are structurally interposed between the underlying Lesser Himalaya and the very low-grade sediments of the Tibetan nappes. They consist of paragneisses, orthogneisses, minor metabasics and, chiefly in the HHC, leucogranites. The HHC registers: a polyphase metamorphism with two main stages designated as M1 and M2; a metamorphic zonation with high-temperature recrystallization and migmatization at middle structural levels and medium-temperature assemblages at upper and lower levels. In contrast, the Kade Unit underwent a low-temperature metamorphism. Rb-Sr and U-Th-Pb isotope data point to derivation of the orthogneisses from early Palaeozoic granitoids, while the leucogranites formed by anatexis of the HHC rocks and were probably emplaced during Miocene time. Most of the complicated metamorphic setting is related to polyphase tectonic stacking of the HHC with the ‘cooler' Kade Unit and Lesser Himalaya during the Himalayan history. However, a few inconsistencies exist for a purely Himalayan age of some Ml assemblages of the HHC. As regards the crustal-derived leucogranites, the formation of a first generation mixed with quartzo-feldspathic leucosomes was possibly linked to melt-lubricated shear zones which favoured rapid crustal displacements; at upper levels they intruded during stage M2 and the latest movements along the syn-metamorphic Miyar Thrust, but before juxtaposition of the Tibetan nappes along the late- metamorphic Zanskar Faul

    Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires

    Full text link
    Negatively and positively charged excitons are identified in the spatially-resolved photoluminescence spectra of quantum wires. We demonstrate that charged excitons are weakly localized in disordered quantum wires. As a consequence, the enhancement of the "binding energy" of a charged exciton is caused, for a significant part, by the recoil energy transferred to the remaining charged carrier during its radiative recombination. We discover that the Coulomb correlation energy is not the sole origin of the "binding energy", in contrast to charged excitons confined in quantum dots.Comment: 4 Fig
    • …
    corecore