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ARTICLE

Periodic squeezing in a polariton Josephson
junction
Albert F. Adiyatullin1, Mitchell D. Anderson 1, Hugo Flayac 1, Marcia T. Portella-Oberli1, Fauzia Jabeen1,

Claudéric Ouellet-Plamondon1,3, Gregory C. Sallen1 & Benoit Deveaud 1,2

The use of a Kerr nonlinearity to generate squeezed light is a well-known way to surpass the

quantum noise limit along a given field quadrature. Nevertheless, in the most common regime

of weak nonlinearity, a single Kerr resonator is unable to provide the proper interrelation

between the field amplitude and squeezing required to induce a sizable deviation from

Poissonian statistics. We demonstrate experimentally that weakly coupled bosonic modes

allow exploration of the interplay between squeezing and displacement, which can give rise to

strong deviations from the Poissonian statistics. In particular, we report on the periodic

bunching in a Josephson junction formed by two coupled exciton-polariton modes. Quantum

modeling traces the bunching back to the presence of quadrature squeezing. Our results,

linking the light statistics to squeezing, are a precursor to the study of nonclassical features in

semiconductor microcavities and other weakly nonlinear bosonic systems.
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A paradigmatic manifestation of Josephson physics is the
alternating particle exchange between two macroscopic
quantum states subject to a potential difference, which

can be observed for both fermions1 and bosons2, 3. In the latter
case, the Josephson dynamics can be drastically enriched by the
presence of a Kerr nonlinearity2, 4, which can give rise to such
effects as self-trapping5, 6, the unconventional photon
blockade7, 8, 9, or (spin) squeezing10, 11. Bosonic Josephson
junctions (JJ) have been realized in various systems, including
superfluid helium12, 13, atomic condensates5, 14, microwave
photons15, and exciton-polaritons6, 16. The latter quasi-particles,
emerging from the strong coupling between excitons and photons
in a semiconductor microcavity17, 18, are particularly suitable for
studies on the impact of the nonlinearity. It stems from the
hybrid light-matter nature of the polaritons which gives rise to an
effective Kerr interaction through the excitonic component, while
the photonic component allows to study their emission using
conventional optical means19. Recent progress in growth and
etching techniques opens the possibility to sculpt confinement
potentials seen by the polaritons at will, down to zero dimension
within mesas20 or micropillars21. These advances open the way to
single mode Bose-Hubbard physics in a solid state system.

Interestingly, the Kerr-type nonlinearity caused by the
exciton–exciton interaction is typically orders of magnitude larger
than what is measured in standard nonlinear optical media.
However, at the quantum level, the single particle nonlinearity U
remains much smaller than the mode linewidths κ even for strong
confinement. Consequently, semiconductor microcavities
embody a weakly nonlinear quantum system where quantum
interferences7, 8 and quadrature squeezing11, 22 can never-
theless be achieved towards nontrivial quantum states. While
noise squeezing has been observed for exciton-polaritons23, 24, its
influence on the emission statistics has never been explored. The
picosecond timescales involved in the polariton dynamics and
emission events were out of the reach for the best available ava-
lanche photodiodes which has prevented an accurate measure-
ment of the second-order correlations. This limitation can be
overcome by using a streak-camera25–27, which acts as an ultra-
fast photon detector suitable for dynamical correlation
measurements.

Here we demonstrate the dynamical squeezing of two popu-
lations of exciton-polaritons undergoing Josephson oscillations
revealed by performing ultrafast time-resolved second-order
correlation measurements. These results benefit from the nature
of Josephson oscillations, which allows us to span the squeezing
parameters dynamically and over a wide range. Following recent
predictions28, we show that this peculiar phenomenon is the
result of the interactions between two coupled coherent states
characterized by a weak nonlinearity. Capitalizing on hybrid
light-matter properties of polaritons, our results demonstrate the
potential to generate nonclassical light in solid state systems
possessing a single particle nonlinearity like on-chip-silicon
resonators29 or microwave Josephson junctions15.

Results
Polariton Josephson junction. The JJ consists of two spatially
separated polariton modes in their ground state, trapped in two
artificially created circular mesas of the same size (Fig. 1a). A
tunnel coupling of J= 0.4 meV between the two mesas results in a
splitting of their ground state energies into bonding and anti-
bonding normal modes (Fig. 1b). These states are resonantly
excited with short laser pulses at an energy of E= 1.462 eV. The
laser is focused into a 3 μm spot mostly onto one mesa, which
allows us to obtain high-contrast Josephson oscillations. The light
emitted by the mesas is collected in the transmission geometry

with a microscope objective and sent to a beamsplitter, realizing a
Hanbury Brown and Twiss (HBT) setup, with a streak-camera
that acts as a single photon detector for both arms30, 31. The
images acquired by the streak-camera are processed using a
photon counting procedure. For the data presented in this paper,
the statistics are accumulated for over 3.9 million laser pulses
(Supplementary Note 1). By summing the photon counts arriving
from all the pulses we access the dynamics of the emission
intensities from the left and right mesas IL(t) and IR(t), shown in
Fig. 2a. The corresponding population imbalance z(t)=(IL−IR)/
(IL+IR) is presented in Fig. 2b and clearly confirms the presence of
Josephson oscillations of polaritons between the two mesas.

Ultrafast time-resolved g2(0) measurements. The second-order
time correlation function is defined in the standard way

gð2Þ t1; t2ð Þ ¼ ây t1ð Þây t2ð Þâ t2ð Þâ t1ð Þ� �
ây t1ð Þâ t1ð Þh i ây t2ð Þâ t2ð Þh i ð1Þ

where âyðtÞ and âðtÞ are polariton creation and annihilation
operators respectively. The time-dependent zero-delay second-
order correlation function is defined as g(2)(0)(t)= g(2)(t, t).
Generally, g(2)(0) characterizes the statistics of light: it is Pois-
sonian when g(2)(0)= 1, super-Poissonian (bunched) when g(2)

(0)> 1, and quantum (antibunched) when g(2)(0)< 1.
As the statistics of the polaritonic system are inherited by the

photons emitted from the microcavity, we can access the second-
order coherence of polaritons by counting the photon coin-
cidences. The measured time-dependent second-order correlation
function g(2)(0)(t) is shown in Fig. 2c, where shaded areas
represent the experimental error. While the polaritonic
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Fig. 1 Polariton Josephson junction. a Schematic of the microcavity with two
coupled mesas, one of which is predominantly illuminated, and the resulting
Josephson oscillations of exciton-polaritons. b Spectrum of polariton
emission from two coupled mesas under nonresonant continuous-wave
excitation. Dashed curves represent the energies of the exciton (X) and
cavity (C) modes. Coupling of mesas with J= 0.4meV leads to formation
of bonding and antibonding states. During the experiments, only these
states are resonantly excited with pulsed laser, schematically shown on the
right. Δ=ωc −ωlaser is the laser detuning
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populations in both mesas occupy their ground states and keep
their coherence, the emission statistics clearly does not remain
coherent. Indeed, g(2)(0) indicates that the light from each mesa
changes its nature from Poissonian to bunched in phase with the
Josephson oscillations. Moreover, the oscillations of g(2)(0) appear
to be in counterphase between the two mesas, i.e., when the
emission of the left mesa is bunched, the right mesa emits
Poissonian light, and vice versa. Finally, the magnitude of the
bunching gets higher as the polariton population decreases.

Simulations. We model the behavior of our system as two cou-
pled nonlinear polariton modes with equal resonance frequency

ωc. The system Hamiltonian reads

Ĥ ¼ P
k¼L;R

�hωcâ
y
kâk þ Uâykâ

y
kâkâk

h
þPkðtÞâyk þ P�

kðtÞâk
i
� J âyLâR þ âyRâL

� � ð2Þ

where J is the tunneling amplitude between the two modes, and
âk are bosonic polariton operators for the fundamental trapped
modes. This simplification is allowed by the resonant excitation
scheme we consider, where Pk(t) are the driving laser pulses
specifically targeting the lowest energy normal modes. To allow
for the large populations involved in our experiment, we expand
the polariton operators as âk ¼ αk þ δâk, where αk ¼ âkh i is the
coherent mean field component and δâk are the quantum fluc-
tuation (noise) operators22 fulfilling δâkh i � 0. The mean-field
dynamics is governed by c-number equations, whereas the fluc-
tuation fields follow a quantum master equation accounting for
interaction with the environment (see Methods). The full
numerical solutions of the mean field plus fluctuation treatment
are superimposed on the experimental data in Fig. 2c and show a
remarkable agreement. At the same time, the measured popula-
tion imbalance is well represented by the simulated one con-
volved with a Gaussian of FWHM= 3.4 ps, representing the
experimental temporal resolution (black line in Fig. 2b).

Two-dimensional correlation function. More subtle features of
the oscillating light statistics can be resolved when calculating the
correlations between the photons arriving at different moments of
time, g(2)(t1, t2) (Fig. 3a). The most salient feature of the plot are
the local maxima of g(2)(t1, t2) correlation function that are
arranged on a rectangular lattice. We compare the g(2)(t1, t2) plot
with the numerical simulations shown in Fig. 3b and observe that
the latter perfectly mimics the arrangement of the maxima of g(2)

(t1, t2) in a rectangular lattice, as well as the amplitude of these
maxima that increases with time. The difference in the amplitude
and sharpness of these peaks results from the temporal resolution
of our experiment.

Discussion
The observed features of the light statistics arise from quadrature
squeezing in a system with two coupled nonlinear states, which is
sufficient to induce wide deviations to the statistics of a coherent
state aj i. Indeed, a squeezed coherent state ξ; αj i ¼ Ŝ αj i, where
Ŝ ¼ exp ξ�â2 � ξây2

� �
is the squeezing operator of complex

parameter ξ, can demonstrate both bunching or antibunching
depending on the interrelation between the amplitudes and
phases of α ¼ αeiφ and ξ= reiθ. The second-order correlation
function of such state is given by11

g 2ð Þ 0ð Þ ¼ 1þ 2α2 p� s cos θ � 2φð Þ½ � þ p2 þ s2

α2 þ pð Þ2 ; ð3Þ

where p ¼ sinh2ðrÞ and s= cosh(r) sinh(r), and for any value of α
one can optimize ξ to obtain a sub-Poissonian statistics. However,
a sizeable non-classical statistics is restricted to small field
amplitude α≲ 1. In the limit of large field, whatever the
squeezing magnitude, the second-order correlation will be
restricted to 1≲ g(2)(0)≤ 3, which was observed, e.g., in ref. 32.
For this reason, it is far easier to reveal the squeezing for α � 1,
when it manifests itself in increase of the g(2)(0) value
(Supplementary Note 2). This is the regime we explore in our
experiment carried out for large mean occupancy.

As one can see from Eq. (3), the degree of bunching depends
on the relationship between the phases of the coherent state and
the squeezing. This is evident from the fact that g(2)(0) can
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Fig. 2 Dynamical photon bunching. a Measured intensity of the light
emission from the left (blue) and right (red) mesa. The gray area indicates
the region where signal-to-noise ratio (SNR) is insufficient for confident
correlation measurements. b Measured population imbalance between two
mesas (magenta points) clearly reveals the Josephson oscillations. Results
of simulations (orange) match well the measured imbalance when
convoluted with the Gaussian corresponding to the time resolution of the
streak-camera being 3.4 ps (black). Time resolution is given in the plot. c
Second-order correlation function g(2)(0) of the light emission from the left
(blue shaded) and right (red shaded) mesa shows that the light statistics
changes from Poissonian (g(2)(0)= 1) to bunched (g(2)(0)> 1) in phase
with Josephson oscillations. Shaded areas represent the error bars
calculated as the standard errors of the mean values. The corresponding
results of the theoretical simulations are shown with blue and red lines. d, e
Simulated evolution of d the absolute value of the squeezing magnitude,
and e the cosine term from Eq. (3) for the left (blue) and right (red) mesas
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acquire different values for IL= IR (Fig. 2c). The calculated values
of the absolute squeezing magnitude r= ξj j and relation between
the phases of the displacement φ and squeezing θ are presented in
Fig. 2d, e, respectively. An interesting observation is that, in the
regime of large field, the highest magnitude of squeezing does not
cause the strongest bunching (Fig. 2d). The super-Poissonian
light rather appears when cos(θ−2ϕ) is negative, as it is clearly
seen from Fig. 2e.

To clarify the origin of the squeezing, it is instructive to look at
a linearized picture of our model. It can be obtained by omitting
the higher-order terms of the Hamiltonian for the fluctuation
field (7) given in the Methods section. In this framework, the
terms α2�k â2k þ α2kâ

y2
k allow us to transform the evolution equa-

tions for the fluctuation fields to those of degenerate parametric
oscillators. The parametric interaction amplitude seen by the left
mesa amounts to

λeffL ¼ U α2L �
J2

U2α4R � ΔR � iκ=2j j2 α
2
R

" #
ð4Þ

that we can link to a generic squeezing parameter ξL as
tanh 2rLð Þ ¼ 2 λeffL

�� ��=κ and θL ¼ arg λeffL
	 


. As one can see from Eq.
(4), for J= 0 the squeezing parameter is irrevocably bound to the
displacement, and cannot be changed on demand. This clearly
shows that the coupling J between two modes is determinant to
allow for an arbitrary control of the squeezing parameter.

The second crucial prerequisite for the manifestation of the
squeezing is presence of a finite nonlinearity28, which is also
evident from the Eq. (4). To underline this, we perform simula-
tions with U set explicitly to zero (Fig. 4c, d). Even though the
mean-field dynamics of Josephson oscillations can still be well
described in this case, the light statistics show absolutely no
deviation from Poissonian with g(2)(0)= 1 all along the system
evolution.

In summary, we have demonstrated oscillating dynamics in the
statistics of light emitted from an exciton-polariton Josephson
junction. We show that this behavior represents an evolution of
the squeezing parameters and is a manifestation of Gaussian
squeezing in coupled resonators containing weak Kerr non-
linearities. All the characteristic features of the dynamically
evolving light statistics can be perfectly described within this
corresponding framework. In fact, the very mechanism of
Gaussian squeezing also lies at the basis of antibunching in
coupled nonlinear cavities and unconventional photon
blockade7, 8 that remains elusive so far. Our results open the way
towards study of this effect in similar systems29, 33, as well as
other nonclassical phenomena in the strongly correlated photo-
nics systems34–36.

Methods
Sample. The planar microresonator consists of λ-cavity made of GaAs with a single
10 nm In0.06Ga0.94As quantum well at an antinode of the field and sandwiched
between GaAs/AlAs Bragg mirrors containing 24 and 20 pairs, respectively. It
features a Rabi splitting of 3.3 meV, exciton–photon detuning of −3 meV, and a
polariton lifetime of τ= 5.2 ps.

For the fabrication of the coupled mesas, first, a planar half-cavity with a
bottom Bragg mirror, quantum well, spacer and an etchstop was grown. Next, the
mesas were fabricated by wet etching of the etchstop on a depth of 6 nm. Finally, a
top Bragg mirror was grown on the top of the processed structure. Due to spatial
confinement, a single mesa features a set of discrete energy levels for polaritons. For
this study we used two coupled mesas with diameter of 2 μm and centre-to-centre
separation of 2.5 μm leading to a coupling constant of J= 0.4 meV.

Excitation scheme. The sample is excited with the circularly polarized laser pulses
generated by a Ti:Sapphire mode-locked laser in resonance with the bonding and
antibonding states of the coupled mesas. To avoid excitation of the higher energy
states, a pulse shaper is used to reduce the spectral width of the laser to 0.7 meV.
The pulses have energy of 5 pJ. The laser emission is focused with a ×50 micro-
scope objective into a 3 μm spot. During the experiment, the sample is held in a
liquid He flow cryostat at a temperature of 5.1 K and is actively stabilized such that
the excitation spot does not shift more that ≈500 nm over the course of the 34 h
experiment.

Detection scheme. The sample emission is collected in transmission geometry
using a ×50 0.42 NA microscope objective. For measuring the second-order cor-
relation function, the sample emission is sent to the beamsplitter representing the
HBT setup. Next, light from two outputs of the beamsplitter is focused on the slit of
the streak-camera in synchroscan mode acting as a single photon detector. This
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allows us first, to observe the photon correlations with a temporal resolution of 3.4
ps, and second, to get a real-space image of the emission. In order to isolate
photons coming from a single sample excitation event, a pulse picker and an
acousto-optic modulator were used to let only one laser pulse excite the sample
during the streak-camera acquisition frame.

Theoretical model. The mean fields obey the c-number equations:

i�h _αL ¼ ΔL � iκ=2þ U αLj j2� �
αL � JαR þ PLðtÞ

i�h _αR ¼ ΔR � iκ=2þ U αRj j2� �
αR � JαL þ PRðtÞ

ð5Þ

where we work in the frame rotating with the laser frequency ωlaser and
ΔL,R= ωc −ωlaser is the detuning. The modes are driven by Gaussian pulses defined
as PL;RðtÞ ¼ pL;R exp � t � t0ð Þ2=σ2t

� �
and the relative values between pL and pR

allows to mimic the position of the laser over the mesas.
The fluctuation fields are governed by the master equation

i�h
∂ρ̂f
∂t

¼ Ĥf ; ρ̂f
� �� i

κ

2

X
k¼L;R

D̂ δâk½ �ρ̂f ð6Þ

where D̂ ô½ �ρ̂ ¼ ôyô; ρ̂
� �� 2ôρ̂ôy are standard Lindblad dissipators accounting for

losses to the environment where κ= ħ/τ. The corresponding Hamiltonian reads

Ĥf ¼
P

k¼L;R
Δkâ

y
kâk þ U α2�k â2k þ α2kâ

y2
k

� �h i
þ P

k¼L;R
U âykâ

y
kâkâk þ 2α�k â

y
kâkâk þ 2αkâ

y
kâ

y
kâk

h i
� J âyLâR þ âyR âL

� � ð7Þ

where we have omitted the δ notation for compactness. We kept here the nonlinear
terms of all orders, which provides an exact quantum description. Note that the
linearized picture would disregard the second line. Equations (5) and (6) are solved
numerically in a Hilbert space truncated to a sufficient number of quanta to
properly describe the weak fluctuation field. The expectation values are computed
as δôþ ôh îI� � ¼ Tr δôþ ôh iÎ	 


ρ̂f
� �

. The squeezing parameters ξk= rk exp(iθk) are
extracted from

rkðtÞ ¼ Δâkh ij j þ âkh ij j2� âykâk
D Eh i

=2

θkðtÞ ¼ arg Δâkh i;
ð8Þ

where Δâk ¼ â2k
� �� âkh i2. The arguments of the coherent states are ϕk ¼ arg âkh i.

The simulated values of the two-time second-order correlations are obtained by
summing all possible second-order truncations of the fourth-order correlations.
While the third- and fourth-order correlations contribution could be added, it
shows a sufficient accuracy for the large occupations we consider here. In that
framework we obtain

g 2ð Þ
k t1; t2ð Þ ¼ G 2ð Þ

k t1; t2ð Þ
N t1ð Þ þ nk t1ð Þ½ � N t2ð Þ þ nk t2ð Þ½ � ð9Þ

G 2ð Þ
k t1; t2ð Þ ¼ âyk t1ð Þâyk t2ð Þâk t2ð Þâk t1ð Þ

D E
’ 2 Re αk t2ð Þαk t1ð Þ âyk t1ð Þâyk t2ð Þ

D Eh i
þ 2Re α�k t2ð Þαk t1ð Þ âyk t1ð Þâk t2ð Þ

D Eh i
þ âyk t1ð Þâyk t2ð Þ

D E��� ���2þ âyk t1ð Þâk t2ð Þ
D E��� ���2

þ Nk t2ð Þnk t1ð Þ þ Nk t1ð Þnk t2ð Þ
þ Nk t1ð ÞNk t2ð Þ þ nk t1ð Þnk t2ð Þ

ð10Þ

where nk(t) and Nk(t) are the fluctuations and mean field occupations respectively.
The second-order two-times correlations are computed by means of the quantum
regression theorem ô1 t1ð Þô2 t2ð Þh i ¼ Tr ô1 bU t1; t2ð Þ ô2ρ̂ t1ð Þf g

h i
, where bU t1; t2ð Þ is

the evolution operator from t1 to t2.

Simulation parameters. In the calculations, we use the following values: U = 1.4
μeV, J = 0.4 meV, ħΔL,R= −0.6 meV, κ= ħ/τ= 125 μeV, pL= 50κ resulting in an
initial blueshift μ ¼ UN0 ’ 0:7 meV, where N0 is the initial population, and z(0)=
(pL − pR)/(pL + pR)= − 0.66. These parameters allow us to mimic the period of
oscillation, initial blueshift, laser detuning and polariton lifetime observed in the
experiment.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon reason-
able request.
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