23 research outputs found

    Synthesis and Cytotoxicity of Novel Bis-Ellipticines and Bis-Isoellipticines

    No full text

    Using data from an encounter sampler to model fish dispersal

    No full text
    A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0· 05 to 0· 15 m s−1 for small poeciliids and fundulids to 0· 1 to 1· 8 m s−1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models

    Environmental DNA metabarcoding reveals distinct fish assemblages supported by seagrass (Zostera marina and Zostera pacifica) beds in different geographic settings in Southern California.

    No full text
    Seagrass beds are disappearing at a record pace despite their known value to our oceans and coastal communities. Simultaneously, our coastlines are under the constant pressure of climate change which is impacting their chemical, physical and biological characteristics. It is thus pertinent to evaluate and record habitat use so we can understand how these different environments contribute to local biodiversity. This study evaluates the assemblages of fish found at five Zostera beds in Southern California using environmental DNA (eDNA) metabarcoding. eDNA is a powerful biodiversity monitoring tool that offers key advantages to conventional monitoring. Results from our eDNA study found 78 species of fish that inhabit these five beds around Southern California representing embayment, open coastal mainland and open coastal island settings. While each bed had the same average number of species found throughout the year, the composition of these fish assemblages was strongly site dependent. There were 35 fish that were found at both open coast and embayment seagrass beds, while embayment seagrass sites had 20 unique fish and open coast sites had 23 unique fish. These results demonstrate that seagrass fish assemblages are heterogenous based on their geographic positioning and that marine managers must take this into account for holistic conservation and restoration efforts

    Fig 1 -

    No full text
    A) Map of embayment seagrass beds. B) Map of Open Coast Mainland seagrass beds. C) Map of Open Coast Island seagrass beds. D) Map of all sites. Yellow indicates Zostera Pacifica, green indicates Zostera Marina, and red indicates our no seagrass site. Maps from USGS National Map Viewer under a CC BY 4.0 license (2022): https://apps.nationalmap.gov/viewer/.</p

    Supplemental Tables 1–8.

    No full text
    Seagrass beds are disappearing at a record pace despite their known value to our oceans and coastal communities. Simultaneously, our coastlines are under the constant pressure of climate change which is impacting their chemical, physical and biological characteristics. It is thus pertinent to evaluate and record habitat use so we can understand how these different environments contribute to local biodiversity. This study evaluates the assemblages of fish found at five Zostera beds in Southern California using environmental DNA (eDNA) metabarcoding. eDNA is a powerful biodiversity monitoring tool that offers key advantages to conventional monitoring. Results from our eDNA study found 78 species of fish that inhabit these five beds around Southern California representing embayment, open coastal mainland and open coastal island settings. While each bed had the same average number of species found throughout the year, the composition of these fish assemblages was strongly site dependent. There were 35 fish that were found at both open coast and embayment seagrass beds, while embayment seagrass sites had 20 unique fish and open coast sites had 23 unique fish. These results demonstrate that seagrass fish assemblages are heterogenous based on their geographic positioning and that marine managers must take this into account for holistic conservation and restoration efforts.</div

    Information of sampling design for the seagrass and control sites.

    No full text
    Information of sampling design for the seagrass and control sites.</p

    Venn diagram of fish species detected by eDNA between two seagrass sites (Big Geiger Cove and Two Harbors) and one sandy bottom site (Cherry Cove).

    No full text
    Venn diagram of fish species detected by eDNA between two seagrass sites (Big Geiger Cove and Two Harbors) and one sandy bottom site (Cherry Cove).</p

    Species richness sequence depth rarefaction.

    No full text
    Seagrass beds are disappearing at a record pace despite their known value to our oceans and coastal communities. Simultaneously, our coastlines are under the constant pressure of climate change which is impacting their chemical, physical and biological characteristics. It is thus pertinent to evaluate and record habitat use so we can understand how these different environments contribute to local biodiversity. This study evaluates the assemblages of fish found at five Zostera beds in Southern California using environmental DNA (eDNA) metabarcoding. eDNA is a powerful biodiversity monitoring tool that offers key advantages to conventional monitoring. Results from our eDNA study found 78 species of fish that inhabit these five beds around Southern California representing embayment, open coastal mainland and open coastal island settings. While each bed had the same average number of species found throughout the year, the composition of these fish assemblages was strongly site dependent. There were 35 fish that were found at both open coast and embayment seagrass beds, while embayment seagrass sites had 20 unique fish and open coast sites had 23 unique fish. These results demonstrate that seagrass fish assemblages are heterogenous based on their geographic positioning and that marine managers must take this into account for holistic conservation and restoration efforts.</div
    corecore