108 research outputs found

    Cu-Mg-Fe-O-(Ce) complex oxides as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO)

    Get PDF
    Multicomponent oxide systems 800-Cu-Mg-Fe-O and 800-Cu-Mg-Fe-O-Ce were tested as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO) process. Materials were obtained by calcination of hydrotalcite-like compounds at temperature 800 degrees C. Some catalysts were doped with cerium by the wet impregnation method. Not only simple oxides, but also complex spinel-like phases were formed during calcination. The influence of chemical composition, especially the occurrence of spinel phases, copper loading and impregnation by cerium, were investigated. Materials were characterized by several techniques: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption (BET), cyclic voltammetry (CV), temperature programmed reduction (H-2-TPR), UV-vis diffuse reflectance spectroscopy and scanning electron microscopy (SEM). Examined oxides were found to be active as catalysts of selective catalytic oxidation of ammonia with high selectivity to N-2 at temperatures above 300 degrees C. Catalysts with low copper amounts (up to 12 wt %) impregnated by Ce were slightly more active at lower temperatures (up to 350 degrees C) than non-impregnated samples. However, when an optimal amount of copper (12 wt %) was used, the presence of cerium did not affect catalytic properties. Copper overloading caused a rearrangement of present phases accompanied by the steep changes in reducibility, specific surface area, direct band gap, crystallinity, dispersion of CuO active phase and Cu2+ accessibility leading to the decrease in catalytic activity.Web of Science102art. no. 15

    Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films

    Get PDF
    TiO2 and Ag-TiO2 (0.05, 0.25 and 1 wt% of Ag) thin films were prepared by the sol–gel method. The prepared films were characterized using SEM-EDAX, XRD, Raman spectroscopy, atomic force microscopy and UV–Vis spectrometry. Photocatalytic decomposition of N2O was performed in an annular batch reactor illuminated with an 8 W Hg lamp (254 nm wavelength). The photoreactivity of Ag-TiO2 increases with the Ag amount to 0.25 wt% Ag. Further increase of Ag loading to 1 wt% Ag did not change N2O conversion. The Ag particles deposited on the TiO2 surface can act as electron–hole separation centers. The presence of water vapor and oxygen in the reaction mixture slightly improved N2O conversion.Web of Science20917517

    Photocatalytic and photochemical decomposition of N2O on ZnS-MMT Catalyst

    Get PDF
    ZnS nanoparticles stabilized by cetyltrimethylammonium bromide were deposited on montmorillonite forming the ZnS-MMT nanocomposite. The nanocomposite was characterized by UV–vis DRS, SEM-EDAX, FTIR, XRD and nitrogen physisorption and tested for N2O photocatalytic decomposition in an annular batch reactor illuminated with an 8 W Hg lamp (254 nm wavelength). Photolysis of N2O was tested at the same conditions. The N2O conversion in inert gas was 79% after 24 h of illumination and was attributed to the simultaneous N2O photocatalytic and photochemical decomposition. The presence of water vapor inhibited photocatalytic reaction pathway while N2O photolysis was improved. Photocatalytic performance was higher with catalyst in fluidized bed than in fixed bed. The reason is that both mass and photon transfer to the photocatalyst was maximized. Better results were obtained with Zn-MMT compared to Evonic P25 catalyst.Web of Science230666

    Must the best laboratory prepared catalyst also be the best in an operational application?

    Get PDF
    Three cobalt mixed oxide deN(2)O catalysts, with optimal content of alkali metals (K, Cs), were prepared on a large scale, shaped into tablets, and tested in a pilot plant reactor connected to the bypassed tail gas from the nitric production plant, downstream from the selective catalytic reduction of NOx by ammonia (SCR NOx/NH3) catalyst. High efficiency in N2O removal (N2O conversion of 75-90% at 450 degrees C, VHSV = 11,000 m(3) m(bed)(-3) h(-1)) was achieved. However, a different activity order of the commercially prepared catalyst tablets compared to the laboratory prepared catalyst grains was observed. Catalytic experiments in the kinetic regime using laboratory and commercial prepared catalysts and characterization methods (XRD, TPR-H-2, physisorption, and chemical analysis) were utilized to explain this phenomenon. Experimentally determined internal effectiveness factors and their general dependency on kinetic constants were evaluated to discuss the relationship between the catalyst activity in the kinetic regime and the internal diffusion limitation in catalyst tablets as well as their morphology. The theoretical N2O conversion as a function of the intrinsic kinetic constants and diffusion rate, expressed as effective diffusion coefficients, was evaluated to estimate the final catalyst performance on a large scale and to answer the question of the above article title.Web of Science92art. no. 16

    On the optimal Cs/Co ratio responsible for the N2ON_2O decomposition activity of the foam supported cobalt oxide catalysts

    Get PDF
    Structured foam catalysts for N2O decomposition containing Co and Cs were prepared via conventional and organic-assisted impregnation method (acetic acid, citric acid, glycerol, glycine, urea). Organic-assisted impregnation caused higher abundance of smaller particles and different faceting. Glycerol usage leads to increase of specific rate constant for N2O decomposition, urea leads to its decrease. The optimal amount of Cs in Co3O4 deposited on the foam was 2–3 times higher than in the bulk Co3O4-Cs due to the dispersion of part of the Cs species over the bare support. The use of glycerol caused a better surface coverage by spinel phase, thus leaving less space for spreading the cesium on the support instead of on the spinel phase. The positive effect of glycerol on the performance of the catalysts with optimized cesium content was attributed to refaceting of the spinal nanocrystals, and greater resistance of the (1 0 0) planes to gaseous NO/H2O contaminates.Web of Science1612art. no. 10531

    Precipitated K-promoted Co-Mn-Al mixed oxides for direct NO decomposition: Preparation and properties

    Get PDF
    Direct decomposition of nitric oxide (NO) proceeds over Co-Mn-Al mixed oxides promoted by potassium. In this study, answers to the following questions have been searched: Do the properties of the K-promoted Co-Mn-Al catalysts prepared by different methods differ from each other? The K-precipitated Co-Mn-Al oxide catalysts were prepared by the precipitation of metal nitrates with a solution of K2CO3/KOH, followed by the washing of the precipitate to different degrees of residual K amounts, and by cthe alcination of the precursors at 500 degrees C. The properties of the prepared catalysts were compared with those of the best catalyst prepared by the K-impregnation of a wet cake of Co-Mn-Al oxide precursors. The solids were characterized by chemical analysis, DTG, XRD, N-2 physisorption, FTIR, temperature programmed reduction (H-2-TPR), temperature programmed CO2 desorption (CO2-TPD), X-ray photoelectron spectrometry (XPS), and the species-resolved thermal alkali desorption method (SR-TAD). The washing of the K-precipitated cake resulted in decreasing the K amount in the solid, which affected the basicity, reducibility, and non-linearly catalytic activity in NO decomposition. The highest activity was found at ca 8 wt.% of K, while that of the best K-impregnated wet cake catalyst was at about 2 wt.% of K. The optimization of the cake washing conditions led to a higher catalytic activity.Web of Science97art. no. 59

    Co-Mn-Al mixed oxides promoted by K for direct NO decomposition: Effect of preparation parameters

    Get PDF
    Fundamental research on direct NO decomposition is still needed for the design of a sufficiently active, stable and selective catalyst. Co-based mixed oxides promoted by alkali metals are promising catalysts for direct NO decomposition, but which parameters play the key role in NO decomposition over mixed oxide catalysts? How do applied preparation conditions affect the obtained catalyst's properties? Co4MnAlOx mixed oxides promoted by potassium calcined at various conditions were tested for direct NO decomposition with the aim to determine their activity, stability and selectivity. The catalysts were prepared by co-precipitation of the corresponding nitrates and subsequently promoted by KNO3. The catalysts were characterized by atomic absorption spectrometry (AAS)/inductive coupled plasma (ICP), X-ray photoelectron spectrometry (XPS), XRD, N-2 physisorption, temperature programmed desorption of CO2 (TPD-CO2), temperature programmed reduction by hydrogen (TPR-H-2), species-resolved thermal alkali desorption (SR-TAD), work function measurement and STEM. The preparation procedure affects physico-chemical properties of the catalysts, especially those that are associated with the potassium promoter presence. The addition of K is essential for catalytic activity, as it substantially affects the catalyst reducibility and basicity-key properties of a deNO catalyst. However, SR-TAD revealed that potassium migration, redistribution and volatilization are strongly dependent on the catalyst calcination temperature-higher calcination temperature leads to potassium stabilization. It also caused the formation of new phases and thus affected the main properties-S-BET, crystallinity and residual potassium amount.Web of Science97art. no. 59

    Magnetically modified nanogold-biosilica composite as an effective catalyst for CO oxidation

    Get PDF
    The temperature-dependent biosynthesis of gold nanoparticles (AuNP) using diatom cells of Diadesmis gallica was successfully performed. The resulting biosynthesis product was a bio-nanocomposite containing AuNP (app. 20 nm) subsequently anchored on the silica surface of diatomaceous frustules. As-prepared nanogold-biosilica composite was tested as catalyst in the oxidation of carbon monoxide using gas chromatograph with thermal conductivity detector. For catalytic activity enhancement, bionanocomposite was magnetically modified by ferrofluid using two different methods, i.e., with and without the use of methanol. The oxidation of CO at 300 degrees C was 58-60% in the presence of nanogold-biosilica composites. CO conversion at 300 degrees C was only 15% over magnetically responsive sample modified in the presence of methanol. On the other hand, complete CO conversion was reached over direct (without methanol) magnetically modified nanogold-biosilica composite at 330 degrees C (GHSV = 60 l g(-1) h(-1)). Our results show, that the type of magnetic modification can influence the catalytic activity of bionanocomposite. The best catalytic effect in CO conversion established direct magnetically modified nanogold-biosilica composite.Web of Science1271158114

    K-modified Co-Mn-Al mixed oxide-effect of calcination temperature on N2O conversion in the presence of H2O and NOx

    Get PDF
    The effect of calcination temperature (500-700 degrees C) on physico-chemical properties and catalytic activity of 2 wt. % K/Co-Mn-Al mixed oxide for N2O decomposition was investigated. Catalysts were characterized by inductively coupled plasma spectroscopy (ICP), X-ray powder diffraction (XRD), temperature-programmed reduction by hydrogen (TPR-H-2), temperature-programmed desorption of CO2 (TPD-CO2), temperature-programmed desorption of NO (TPD-NO), X-ray photoelectron spectrometry (XPS) and N-2 physisorption. It was found that the increase in calcination temperature caused gradual crystallization of Co-Mn-Al mixed oxide, which manifested itself in the decrease in Co2+/Co3+ and Mn3+/Mn4+ surface molar ratio, the increase in mean crystallite size leading to lowering of specific surface area and poorer reducibility. Higher surface K content normalized per unit surface led to the increase in surface basicity and adsorbed NO per unit surface. The effect of calcination temperature on catalytic activity was significant mainly in the presence of NOx, as the optimal calcination temperature of 500 degrees C is necessary to ensure sufficient low surface basicity, leading to the highest catalytic activity. Observed NO inhibition was caused by the formation of surface mononitrosyl species bonded to tetrahedral metal sites or nitrite species, which are stable at reaction temperatures up to 450 degrees C and block active sites for N2O decomposition.Web of Science1010art. no. 113

    Catalytic oxidation of ammonia over cerium-modified copper aluminium zinc mixed oxides

    Get PDF
    Copper-containing mixed metal oxides are one of the most promising catalysts of selective catalytic oxidation of ammonia. These materials are characterized by high catalytic efficiency; however, process selectivity to dinitrogen is still an open challenge. The set of Cu-Zn-Al-O and Ce/Cu-Zn-Al-O mixed metal oxides were tested as catalysts of selective catalytic oxidation of ammonia. At the low-temperature range, from 250 & DEG;C up to 350 & DEG;C, materials show high catalytic activity and relatively high selectivity to dinitrogen. Samples with the highest Cu loading 12 and 15 mol.% of total cation content were found to be the most active materials. Additional sample modification by wet impregnation of cerium (8 wt.%) improves catalytic efficiency, especially N-2 selectivity. The comparison of catalytic tests with results of physicochemical characterization allows connecting the catalysts efficiency with the form and distribution of CuO on the samples' surface. The bulk-like well-developed phases were associated with sample activity, while the dispersed CuO phases with dinitrogen selectivity. Material characterization included phase composition analysis (X-ray powder diffraction, UV-Vis diffuse reflectance spectroscopy), determination of textural properties (low-temperature N-2 sorption, scanning electron microscopy) and sample reducibility analysis (H-2 temperature-programmed reduction).Web of Science1421art. no. 658
    corecore