8 research outputs found

    Molecular taxonomy of **Crocidura** species (Eulipotyphla: Soricidae) in a key biogeographical region for African shrews, Nigeria

    No full text
    International audienceThe taxonomy of African shrew species is still unresolved due to their conserved morphology. This also affects knowledge concerning their geographic distribution. In Nigeria, using mitochondrial Cytochrome b gene sequences, we carried out a survey for shrews from the genus Crocidura across various ecological zones to determine taxa that are present and also to assess their phylogeographic structure. Our analyses include 183 specimens collected with Sherman traps from 19 localities around the country. We detected six taxa: Crocidura olivieri lineages II, III and IV, C. hildegardeae, C. jouvenetae, and C. foxi. Among these, C. hildegardeae and C. jouvenetae are reported in Nigeria for the first time. Phylogenetic comparison of our genetic sequences to those generated from other parts of Africa demonstrate that all species in our study, as currently defined, are in need of taxonomic revision. Geographically, Nigeria seems to represent the easternmost boundary for C. olivieri lineage II and C. jouvenetae, and the western distribution limit of C. olivieri lineage IV and C. hildegardeae. The Niger River appears to be the most significant topographical barrier restricting these taxa. This information is vital to preserving the diversity but also managing the epidemiological potential of these small mammals

    Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria

    No full text
    Abstract Background Lassa fever, killing thousands of people annually, is the most reported viral zoonotic disease in Nigeria. Recently, different rodent species carrying diverse lineages of the Lassa virus (LASV) in addition to a novel Mobala-like genetic sequence were detected within the country. Here, screening 906 small mammal specimens from 11 localities for IgG antibodies and incorporating previous PCR detection data involving the same populations, we further describe arenavirus prevalence across Nigeria in relation to host species and geographical location. Methods Small mammals were trapped during the period 2011–2015 according to geographical location (endemic and non-endemic zones for Lassa fever), season (rainy and dry seasons between 2011 and 2012 for certain localities) and habitat (indoors, peridomestic settings and sylvatic vegetation). Identification of animal specimens from genera such as Mastomys and Mus (Nannomys) was assisted by DNA sequencing. Small mammals were tested for LASV IgG antibody using an indirect immunofluorescence assay (IFA). Results Small mammals were infected in both the endemic and non-endemic zones for Lassa fever, with a wider range of species IgG-positive (n = 8) than those which had been previously detected to be PCR-positive (n = 3). IgG-positive species, according to number of infected individuals, were Mastomys natalensis (n = 40), Mastomys erythroleucus (n = 15), Praomys daltoni (n = 6), Mus baoulei (n = 5), Rattus rattus (n = 2), Crocidura spp. (n = 2), Mus minutoides (n = 1) and Praomys misonnei (n = 1). Multimammate mice (Mastomys natalensis and M. erythroleucus) were the most ubiquitously infected, with animals testing positive by either PCR or IgG in 7 out of the 11 localities sampled. IgG prevalence in M. natalensis ranged from 1% in Abagboro, 17–36 % in Eguare Egoro, Ekpoma and Ngel Nyaki, up to 52 % in Mayo Ranewo. Prevalence according to locality, season and age was not, however, statistically significant for M. natalensis in Eguare Egoro and Ekpoma, localities that were sampled longitudinally. Conclusions Overall, our study demonstrates that arenavirus occurrence is probably more widely distributed geographically and in extent of host taxa than is currently realized. This expanded scope should be taken into consideration in Lassa fever control efforts. Further sampling should also be carried out to isolate and characterize potential arenaviruses present in small mammal populations we found to be seropositive

    Small mammal diversity and dynamics within Nigeria, with emphasis on reservoirs of the lassa virus

    No full text
    <p>Nigeria has a rich small mammal community, with several species implicated as carriers of zoonotic microbes such as the Lassa virus (LASV). We sought to elucidate the diversity and distribution of these animals (including known LASV reservoirs) geographically, habitat-wise and seasonally. Our DNA-assisted survey detected at least 19 small mammal species amongst 790 specimens. Diversity indices were similar between ecological zones and also between endemic and non-endemic areas for Lassa fever. <i>Mastomys natalensis</i>, the most renowned LASV host, was present in eight out of nine localities sampled. We also described the spatial occurrence of other known LASV hosts such as <i>M. erythroleucus</i> and <i>Hylomyscus pamfi</i>, including carriers of LASV-like arenaviruses such as <i>Mus</i> (<i>Nannomys</i>) spp. The most numerous rodents (<i>Mastomys natalensis</i>, <i>M. erythroleucus</i>, and <i>Praomys daltoni</i>) were captured mainly inside human dwellings. Reproductive activity occurred throughout the year, but led to population peaks for <i>M. natalensis</i> in the dry season and for <i>M. erythroleucus</i> and <i>P. daltoni</i> in the rainy season. Extensive geographic distribution of LASV rodent reservoirs, with population peaks in different seasons, shows that the risk of rodent-to-human transmission of LASV is greater than currently realized.</p

    Arenavirus Diversity and Phylogeography of Mastomys natalensis Rodents, Nigeria

    No full text
    Mastomys natalensis rodents are natural hosts for Lassa virus (LASV). Detection of LASV in 2 mitochondrial phylogroups of the rodent near the Niger and Benue Rivers in Nigeria underlines the potential for LASV emergence in fresh phylogroups of this rodent. A Mobala-like sequence was also detected in eastern Nigeria

    Circulation of Lassa virus across the endemic Edo-Ondo axis, Nigeria, with cross-species transmission between multimammate mice

    Get PDF
    ABSTRACTWe phylogenetically compared sequences of the zoonotic Lassa virus (LASV) obtained from Mastomys rodents in seven localities across the highly endemic Edo and Ondo States within Nigeria. Sequencing 1641 nt from the S segment of the virus genome, we resolved clades within lineage II that were either limited to Ebudin and Okhuesan in Edo state (2g-beta) or along Owo-Okeluse-Ifon in Ondo state (2g-gamma). We also found clades within Ekpoma, a relatively large cosmopolitan town in Edo state, that extended into other localities within Edo (2g-alpha) and Ondo (2g-delta). LASV variants from M. natalensis within Ebudin and Ekpoma in Edo State (dated approximately 1961) were more ancient compared to those from Ondo state (approximately 1977), suggesting a broadly east-west virus migration across south-western Nigeria; a pattern not always consistent with LASV sequences derived from humans in the same localities. Additionally, in Ebudin and Ekpoma, LASV sequences between M. natalensis and M. erythroleucus were interspersed on the phylogenetic tree, but those from M. erythroleucus were estimated to emerge more recently (approximately 2005). Overall, our results show that LASV amplification in certain localities (reaching a prevalence as high as 76% in Okeluse), anthropogenically-aided spread of rodent-borne variants amidst the larger towns (involving communal accommodation such as student hostels), and virus-exchange between syntopic M. natalensis and M. erythroleucus rodents (as the latter, a savanna species, encroaches southward into the degraded forest) pose perpetual zoonotic hazard across the Edo-Ondo Lassa fever belt, threatening to accelerate the dissemination of the virus into non endemic areas

    New Hosts of The Lassa Virus.

    Full text link
    Lassa virus (LASV) causes a deadly haemorrhagic fever in humans, killing several thousand people in West Africa annually. For 40 years, the Natal multimammate rat, Mastomys natalensis, has been assumed to be the sole host of LASV. We found evidence that LASV is also hosted by other rodent species: the African wood mouse Hylomyscus pamfi in Nigeria, and the Guinea multimammate mouse Mastomys erythroleucus in both Nigeria and Guinea. Virus strains from these animals were isolated in the BSL-4 laboratory and fully sequenced. Phylogenetic analyses of viral genes coding for glycoprotein, nucleoprotein, polymerase and matrix protein show that Lassa strains detected in M. erythroleucus belong to lineages III and IV. The strain from H. pamfi clusters close to lineage I (for S gene) and between II &III (for L gene). Discovery of new rodent hosts has implications for LASV evolution and its spread into new areas within West Africa
    corecore