1,743 research outputs found

    An infrared measurement of chemical desorption from interstellar ice analogues

    Get PDF
    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical net- work models commonly include this process. Although there have been a few previous experimental efforts, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S -> HS + H2 (reaction 1) and HS + H -> H2S (reaction 2), which are key to interstellar sulphur chemistry. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments

    Magnetic and Structural Studies of the Quasi-Two-Dimensional Spin-Gap System (CuCl)LaNb2O7

    Full text link
    We report magnetization, nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and transmission electron microscopy (TEM) studies on the quasi-two-dimensional spin-gap system (CuCl)LaNb2O7, a possible candidate for the J1-J2 model on a square lattice. A sharp single NQR line is observed at the Cu and Cl sites, indicating that both Cu and Cl atoms occupy a unique site. However, the electric field gradient tensors at the Cu, Cl, and La sites do not have axial symmetry. This is incompatible with the reported crystal structure. Thus the J1-J2 model has to be modified. We propose alternative two-dimensional dimer models based on the NMR, NQR, and TEM results. The value of the hyperfine coupling constant at the Cu sites indicates that the spin density is mainly on the d(3z2-r2) orbital (z parallel c). At 1.5 K, Cu- and Nb-NMR signals disappear above the critical field Bc1 = 10.3 T determined from the onset of the magnetization, indicating a field-induced magnetic phase transition at Bc1.Comment: 9 pages, 16 figure

    Screening procedure for structurally and electronically matched contact layers for high-performance solar cells: hybrid perovskites

    No full text
    The rapid progress in performance of solar cells based on hybrid halide perovskites means that devices based on these materials have reached a stage where research interest can now focus on development of robust technology. One of the key questions relating to these (and indeed any) devices is their lifetime and stability which in turn is often influenced by the quality of interfaces and junctions within the device. In this study we present a methodology which allows screening for mechanically stable, electronically suitable interface combinations – applying the technique to screen 175 common semiconductors for viability as electron and hole extracting contacts for CH3NH3PbI3. The screening method can be applied to any semiconductor junction problem and relies on easily obtained experimental or theoretical information – electron affinity, ionisation potential, lattice parameters and crystal structure. From the screening we rank the candidates according to a figure of merit, which accounts for band alignment and chemical/mechanical stability of the interface. Our screening predicts stable interfaces with commonly applied electron extraction layers such as TiO2 and ZnO as well giving insight into the optimal polymorphs, surfaces and morphologies for achieving good quality contacts. Finally we also predict potentially effective new hole and electron extraction layers, namely Cu2O, FeO, SiC, GaN, and ZnTe

    Quantification of economic losses associated with respiratory infections in Ugandan pigs

    Get PDF

    AIR TEMPERATURE AND SUNLIGHT INTENSITY OF DIFFERENT GROWING PERIOD AFFECTS THE BIOMASS, LEAF COLOR AND BETACYANIN PIGMENT ACCUMULATIONS IN RED AMARANTH (AMARANTHUS TRICOLOR L.)

    Get PDF
    The objectives of this study were to determine the effects of daily air temperature and sunlight intensity variations on biomass production, leaf color and betacyanin accumulations in red amaranth (Amaranthus tricolor L.). For this purpose, two improved cultivars; BARI-1 and Altopati were grown in seven different period (from April to October, 2006) under vinyl house condition in the experimental facilities of Gifu University, Japan. The mean daily temperatures fluctuated from 18 (growing month- April) to 29ºC (August), while the mean sunlight intensities varied from 850 (October) to 1257 μmol m-2 S-1 (August). The highest biomass yield and betacyanin accumulation was obtained in the warmer growing period (July and August) at 28 to 29ºC mean air temperatures and 1240 to 1257 μmol m-2 S-1 sunlight intensity. At the warmer growing period red amaranth produced red leaves with high color index, which enhanced the betacyanin accumulations. The biomass yield and betacyanin accumulations were reduced significantly in the growing period/month April and October under low temperature regimes (mean air temperature 18 and 19ºC, respectively). However, growing period’s air temperature contributed more for biomass and betacyanin accumulations in red amaranth than sunlight intensity. Comparing two cultivars the biomass yield of BARI-1 was higher biomass yield than that of Altopati and Altopati highlighted with the higher betacyanin accumulations than that of BARI-1 in all growing period. Quantification of the effects of daily air temperature and sunlight intensity on biomass and betacyanin accumulation is important for growers producing these crops for fresh market and also optimize the best growing period. Therefore the influence of air temperatures and sunlight intensity should be considered while grown red amaranth for maximum yield with bioactive compounds like betacyanin and should be grown in between 28 to 29ºC air temperature and 1240 to 1257 μmol.m-2.S-1. of sunlight intensity

    Use of Stockpiled Berseem Clover as a Supplement for Grazed Corn Crop Residues

    Get PDF
    In the fall of 1994, mature Charolais cross cows in midgestation were allotted to duplicate 15 acre fields containing corn crop residues or a 2-to-1 mixture of corn crop residues and berseem clover planted in 3 strips at an allowance of 2.5 acres/cow for a 140 day wintering season. Similar cows were allotted duplicate drylots. All cows were fed hay as necessary to maintain a body condition score of 5. Cows grazing corn crop residues with or without berseem clover required 2596 pounds less hay per cow than cows maintained in a drylot. There was no difference in the amounts of hay required by cows grazing corn crop residues alone or with berseem clover. Initial organic matter yield of berseem clover was nearly that of corn crop residues and did not decrease as rapidly as corn crop residues. Berseem clover had a higher organic matter digestibility than corn crop residues at the initiation of grazing. Organic matter digestibility of berseem clover, however, decreased more rapidly than corn crop residues because of weathering during the winter

    Stephanofilaria sp em bovinos do município de São Carlos, Estado de São Paulo.

    Get PDF
    Estudos clínicas e laboratórios em ulceras do tipo "Chagas de Verão" em bovinos do Município de São Carlos. Observou-se uma dermatite nodular ulcerativa na região da quartela, jarrete, cruz, cabeça, teta, paleta

    A new single nucleotide polymorphism in the ryanodine gene of chicken skeletal muscle.

    Get PDF
    Some genes affect meat quality in chickens. We looked for polymorphisms in the Gallus gallus α-RyR gene (homologous to RyR 1) that could be associated with PSE (pale, soft and exudative) meat. Because RyR genes are over 100,000 bp long and code for proteins with about 5000 amino acids, primers were designed to amplify a fragment of hotspot region 2, a region with a high density of mutations in other species. Total blood DNA was extracted from 50 birds, 25 that had PSE meat and 25 normal chickens. The DNA samples were amplified by PCR, cloned, sequenced, and used to identify single nucleotide polymorphisms (SNPs). The amplified fragment of α-RyR was 604 nucleotides in length; 181 nucleotides were similar to two exons from a hypothetical turkey cDNA sequence for α-RyR. A non-synonymous nucleotide substitution (G/A) was identified in at least one of the three sequenced clones obtained from nine animals, six PSE (HAL+) birds and three normal (HAL-) birds; they were heterozygous for this mutation
    corecore