2,248 research outputs found

    Centrosome-independent mitotic spindle formation in vertebrates

    Get PDF
    AbstractBackground: In cells lacking centrosomes, the microtubule-organizing activity of the centrosome is substituted for by the combined action of chromatin and molecular motors. The question of whether a centrosome-independent pathway for spindle formation exists in vertebrate somatic cells, which always contain centrosomes, remains unanswered, however. By a combination of labeling with green fluorescent protein (GFP) and laser microsurgery we have been able to selectively destroy centrosomes in living mammalian cells as they enter mitosis.Results: We have established a mammalian cell line in which the boundaries of the centrosome are defined by the constitutive expression of γ-tubulin–GFP. This feature allows us to use laser microsurgery to selectively destroy the centrosomes in living cells. Here we show that this method can be used to reproducibly ablate the centrosome as a functional entity, and that after destruction the microtubules associated with the ablated centrosome disassemble. Depolymerization–repolymerization experiments reveal that microtubules form in acentrosomal cells randomly within the cytoplasm. When both centrosomes are destroyed during prophase these cells form a functional bipolar spindle. Surprisingly, when just one centrosome is destroyed, bipolar spindles are also formed that contain one centrosomal and one acentrosomal pole. Both the polar regions in these spindles are well focused and contain the nuclear structural protein NuMA. The acentrosomal pole lacks pericentrin, γ-tubulin, and centrioles, however.Conclusions: These results reveal, for the first time, that somatic cells can use a centrosome-independent pathway for spindle formation that is normally masked by the presence of the centrosome. Furthermore, this mechanism is strong enough to drive bipolar spindle assembly even in the presence of a single functional centrosome

    A Suborbital Payload for Soft X-ray Spectroscopy of Extended Sources

    Full text link
    We present a suborbital rocket payload capable of performing soft X-ray spectroscopy on extended sources. The payload can reach resolutions of ~100(lambda/dlambda) over sources as large as 3.25 degrees in diameter in the 17-107 angstrom bandpass. This permits analysis of the overall energy balance of nearby supernova remnants and the detailed nature of the diffuse soft X-ray background. The main components of the instrument are: wire grid collimators, off-plane grating arrays and gaseous electron multiplier detectors. This payload is adaptable to longer duration orbital rockets given its comparatively simple pointing and telemetry requirements and an abundance of potential science targets.Comment: Accepted to Experimental Astronomy, 12 pages plus 1 table and 17 figure

    A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein Pkl1p

    Get PDF
    This is the publisher's version, also available electronically from "http://www.molbiolcell.org".Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. γ-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in γ-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30°C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant γ-tubulin is like the wild-type protein. Prediction of γ-tubulin structure indicates that non-α/β-tubulin protein–protein interactions could be affected. The kinesin-like protein (klp)Pkl1p localizes to the spindle poles and spindle and is essential for viability of the γ-tubulin mutant and in multicopy for normal cell morphology at 30°C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for γ-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of γ-tubulin that involves non-tubulin protein–protein interactions, presumably with a second motor, MAP, or MTOC component

    Hunting for answers: Linking lectures with the real world using a mobile treasure hunt app

    Get PDF
    Plants underpin our society providing food, fuel, medicines, clean air and water, positive mental health, and are central to biodiversity conservation. Despite this importance and an increasing need for people with plant-identification skills, many societies are becoming increasingly ignorant to the species with which they interact. To benefit both our undergraduates and the society they will enter, we applied mobile technology to improve plant identification and appreciation , while providing opportunities to practice transferable team work and verbal communication skills. Encouraging 'plant vision' will improve conservation efforts while increasing personal connections with green spaces, leading to mental health improvements for society. Summary • Despite the importance of plants to human civilization, many societies are becoming increasingly ignorant to the plants that inhabit their surrounding environment. A phenomenon known as 'plant blindness'. To address plant blindness in undergraduate students we designed an outdoor activity using a mobile phone app. Our aims were to identify the level of 'plant blindness' in our students; investigate engagement with the app and activity ; determine if we can raise awareness of links between lecture content and real world scenarios; and assess the student experience as a result of the activity in large classes. • The app chosen was ActionBound. Students were asked to find and photograph local examples of four plant families, along with identifying physiological benefits of features covered in lectures. Two different first year classes were exposed to this activity-Plant Science and Life on Earth. • The Plant Science students (60% success rate for three families; 55 students) were less plant blind than Life on Earth students (less than 44% success rate in any of the four families; 200 students). Students engaged well with the activity with all groups submitting sensible attempts at the responses. Most students reported that the activity increased links to lecture material and all but one student reported positive experiences. • Our students found the treasure hunt learning environment is a fun way to engage with the plant topics covered in lectures. In future iterations, we will more explicitly explain the links to potential careers and will address some of the logistical challenges faced in this first cohort. K E Y W O R D S collaborative learning, fun learning, inclusivity, large classes, mobile learning, plant blindness, situational learning, treasure hun

    Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale

    Get PDF
    The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular micro-or nanotechnologies, since any attempt to control cell behavior in a device must provide the appropriate physical microenvironment for the desired cell behavior. Cells sense, process, and respond to biophysical cues in their environment through a set of integrated, multi-scale structural complexes that span length scales from single molecules to tens of microns, including small clusters of force-sensing molecules at the cell surface, micron-sized cell-ECM focal adhesion complexes, and the cytoskeleton that permeates and defines the entire cell. This review focuses on several key technologies that have recently been developed or adapted for the study of the dynamics of structural micro-and nanosystems in living cells and how these systems contribute to spatially-and temporally-controlled changes in cellular structure and mechanics. We begin by discussing subcellular laser ablation, which permits the precise incision of nanoscale structural elements in living cells in order to discern their mechanical properties and contributions to cell structure. We then discuss fluorescence recovery after photobleaching and fluorescent speckle microscopy, two live-cell fluorescence imaging methods that enable quantitative measurement of the binding and transport properties of specific proteins in the cell. Finally, we discuss methods to manipulate cellular structural networks by engineering the extracellular environment, including microfabrication of ECM distributions of defined geometry and microdevices designed to measure cellular traction forces at micron-scale resolution. Together, these methods form a powerful arsenal that is already adding significantly to our understanding of the nanoscale architecture and mechanics of living cells and may contribute to the rational design of new cellular micro-and nanotechnologies

    Sonically-enhanced widgets: comments on Brewster and Clarke, ICAD 1997

    Get PDF
    This paper presents a review of the research surrounding the paper “The Design and Evaluation of a Sonically Enhanced Tool Palette” by Brewster and Clarke from ICAD 1997. A historical perspective is given followed by a discussion of how this work has fed into current developments in the area

    Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of \u3cem\u3eFARS2\u3c/em\u3e-linked Disease

    Get PDF
    Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins

    Structure and function of a spectrin-like regulator of bacterial cytokinesis

    Get PDF
    © 2014 Macmillan Publishers Limited. All rights reserved. Bacterial cell division is facilitated by a molecular machine - the divisome - that assembles at mid-cell in dividing cells. The formation of the cytokinetic Z-ring by the tubulin homologue FtsZ is regulated by several factors, including the divisome component EzrA. Here we describe the structure of the 60-kDa cytoplasmic domain of EzrA, which comprises five linear repeats of an unusual triple helical bundle. The EzrA structure is bent into a semicircle, providing the protein with the potential to interact at both N- and C-termini with adjacent membrane-bound divisome components. We also identify at least two binding sites for FtsZ on EzrA and map regions of EzrA that are responsible for regulating FtsZ assembly. The individual repeats, and their linear organization, are homologous to the spectrin proteins that connect actin filaments to the membrane in eukaryotes, and we thus propose that EzrA is the founding member of the bacterial spectrin family

    Effects of environmental enrichment on white matter glial responses in a mouse model of chronic cerebral hypoperfusion

    Get PDF
    Background: This study was designed to explore the beneficial effects of environmental enrichment (EE) on white matter glial changes in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Methods: A total of 74 wild-type male C57BL/6J mice underwent BCAS or sham surgery. One week after surgery, the mice were randomly assigned into three different groups having varied amounts of EE—standard housing with no EE conditions (std), limited exposure with 3 h EE a day (3 h) and full-time exposure to EE (full) for 12 weeks. At 16 weeks after BCAS surgery, behavioural and cognitive function were assessed prior to euthanasia. Brain tissues were analysed for the degree of gliosis including morphological changes in astrocytes and microglia. Results: Chronic cerebral hypoperfusion (or BCAS) increased clasmatodendrocytes (damaged astrocytes) with disruption of aquaporin-4 immunoreactivity and an increased degree of microglial activation/proliferation. BCAS also impaired behavioural and cognitive function. These changes were significantly attenuated, by limited exposure compared to full-time exposure to EE. Conclusions: Our results suggest that moderate or limited exposure to EE substantially reduced glial damage/activation. Our findings also suggest moderate rather than continuous exposure to EE is beneficial for patients with subcortical ischaemic vascular dementia characterised by white matter disease-related inflammation
    corecore