334 research outputs found
1,2,6-thiadiazinones as novel narrow spectrum calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors
We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors
AMP-activated protein kinase complexes containing the β2 regulatory subunit are upregulated during and contribute to adipogenesis
AMP-activated protein kinase (AMPK) is a heterotrimer of α catalytic and β and γ regulatory subunits that acts to regulate cellular and whole-body nutrient metabolism. The key role of AMPK in sensing energy status has led to significant interest in AMPK as a therapeutic target for dysfunctional metabolism in type 2 diabetes, insulin resistance and obesity. Despite the actions of AMPK in liver and skeletal muscle being extensively studied, the role of AMPK in adipose tissue and adipocytes remains less well characterised. Small molecules that selectively influence AMPK heterotrimers containing specific AMPKβ subunit isoforms have been developed, including MT47-100, which selectively inhibits complexes containing AMPKβ2. AMPKβ1 and AMPKβ2 are the principal AMPKβ subunit isoforms in rodent liver and skeletal muscle respectively, yet the contribution of specific AMPKβ isoforms to adipose tissue function, however, remains largely unknown. This study therefore sought to determine the contribution of AMPKβ subunit isoforms to adipocyte biology, focussing on adipogenesis. AMPKβ2 was the principal AMPKβ isoform in 3T3-L1 adipocytes, isolated rodent adipocytes and human subcutaneous adipose tissue, as assessed by the contribution to total cellular AMPK activity. Downregulation of AMPKβ2 with siRNA inhibited lipid accumulation, cellular adiponectin levels and adiponectin secretion during 3T3-L1 adipogenesis, whereas downregulation of AMPKβ1 had no effect. Incubation of 3T3-L1 cells with MT47-100 selectively inhibited AMPK complexes containing AMPKβ2 whilst simultaneously inhibiting cellular lipid accumulation as well as cellular levels and secretion of adiponectin. Taken together, these data indicate that increased expression of AMPKβ2 is an important feature of efficient adipogenesis
Systemic ablation of Camkk2 impairs metastatic colonization and improves insulin sensitivity in TRAMP mice : Evidence for cancer cell-extrinsic CAMKK2 functions in prostate cancer
Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2’s effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2−/− mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer
Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes
SummaryThe AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is considered a promising target for drugs to treat these diseases. Recently, the thienopyridone A769662 has been reported to directly activate AMPK by an unexpected mechanism. Here we show that A769662 activates AMPK by a mechanism involving the β subunit carbohydrate-binding module and residues from the γ subunit but not the AMP-binding sites. Furthermore, A769662 exclusively activates AMPK heterotrimers containing the β1 subunit. Our findings highlight the regulatory role played by the β subunit in modulating AMPK activity and the possibility of developing isoform specific therapeutic activators of this important metabolic regulator
Recommended from our members
Associated reading skills in children with a history of Specific Language Impairment (SLI)
A large cohort of 200 eleven-year-old children with Specific Language Impairment (SLI) were assessed on basic reading accuracy and on reading comprehension as well as language tasks. Reading skills were examined descriptively and in relation to early language and literacy factors. Using stepwise regression analyses in which age and nonverbal IQ were controlled for, it was found that a single word reading measure taken at 7 years was unsurprisingly a strong predictor of the two different types of reading ability. However, even with this measure included, a receptive syntax task (TROG) entered when reading accuracy score was the DV. Furthermore, a test of expressive syntax/narrative and a receptive syntax task completed at 7 years entered into the model for word reading accuracy. When early reading accuracy was excluded from the analyses, early phonological skills also entered as a predictor of both reading accuracy and comprehension at 11 years. The group of children with a history of SLI were then divided into those with no literacy difficulties at 11 and those with some persisting literacy impairment. Using stepwise logistic regression, and again controlling for IQ and age, 7 years receptive syntax score (but not tests of phonology, expressive vocabulary or expressive syntax/narrative) entered as a positive predictor of membership of the ‘no literacy problems’ group regardless of whether early reading accuracy was controlled for in step one. The findings are discussed in relation to the overlap of SLI and dyslexia and the long term sequelae of language impairment
An AMPKa2-specific phospho-switch controls lysosomal targeting for activation
AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy
Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone
Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass.Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass
Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator
The AMP-activated protein kinase (AMPK) αβγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2β2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2β2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating β2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2β2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2β1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2β2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body
A novel small molecule inhibitor of human Drp1
Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1
- …