26 research outputs found

    Chest radiographs and machine learning - Past, present and future.

    Get PDF
    Despite its simple acquisition technique, the chest X-ray remains the most common first-line imaging tool for chest assessment globally. Recent evidence for image analysis using modern machine learning points to possible improvements in both the efficiency and the accuracy of chest X-ray interpretation. While promising, these machine learning algorithms have not provided comprehensive assessment of findings in an image and do not account for clinical history or other relevant clinical information. However, the rapid evolution in technology and evidence base for its use suggests that the next generation of comprehensive, well-tested machine learning algorithms will be a revolution akin to early advances in X-ray technology. Current use cases, strengths, limitations and applications of chest X-ray machine learning systems are discussed

    Assessment of the effect of a comprehensive chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study.

    Full text link
    OBJECTIVES: Artificial intelligence (AI) algorithms have been developed to detect imaging features on chest X-ray (CXR) with a comprehensive AI model capable of detecting 124 CXR findings being recently developed. The aim of this study was to evaluate the real-world usefulness of the model as a diagnostic assistance device for radiologists. DESIGN: This prospective real-world multicentre study involved a group of radiologists using the model in their daily reporting workflow to report consecutive CXRs and recording their feedback on level of agreement with the model findings and whether this significantly affected their reporting. SETTING: The study took place at radiology clinics and hospitals within a large radiology network in Australia between November and December 2020. PARTICIPANTS: Eleven consultant diagnostic radiologists of varying levels of experience participated in this study. PRIMARY AND SECONDARY OUTCOME MEASURES: Proportion of CXR cases where use of the AI model led to significant material changes to the radiologist report, to patient management, or to imaging recommendations. Additionally, level of agreement between radiologists and the model findings, and radiologist attitudes towards the model were assessed. RESULTS: Of 2972 cases reviewed with the model, 92 cases (3.1%) had significant report changes, 43 cases (1.4%) had changed patient management and 29 cases (1.0%) had further imaging recommendations. In terms of agreement with the model, 2569 cases showed complete agreement (86.5%). 390 (13%) cases had one or more findings rejected by the radiologist. There were 16 findings across 13 cases (0.5%) deemed to be missed by the model. Nine out of 10 radiologists felt their accuracy was improved with the model and were more positive towards AI poststudy. CONCLUSIONS: Use of an AI model in a real-world reporting environment significantly improved radiologist reporting and showed good agreement with radiologists, highlighting the potential for AI diagnostic support to improve clinical practice

    Do comprehensive deep learning algorithms suffer from hidden stratification? A retrospective study on pneumothorax detection in chest radiography

    Full text link
    ObjectivesTo evaluate the ability of a commercially available comprehensive chest radiography deep convolutional neural network (DCNN) to detect simple and tension pneumothorax, as stratified by the following subgroups: the presence of an intercostal drain; rib, clavicular, scapular or humeral fractures or rib resections; subcutaneous emphysema and erect versus non-erect positioning. The hypothesis was that performance would not differ significantly in each of these subgroups when compared with the overall test dataset.DesignA retrospective case–control study was undertaken.SettingCommunity radiology clinics and hospitals in Australia and the USA.ParticipantsA test dataset of 2557 chest radiography studies was ground-truthed by three subspecialty thoracic radiologists for the presence of simple or tension pneumothorax as well as each subgroup other than positioning. Radiograph positioning was derived from radiographer annotations on the images.Outcome measuresDCNN performance for detecting simple and tension pneumothorax was evaluated over the entire test set, as well as within each subgroup, using the area under the receiver operating characteristic curve (AUC). A difference in AUC of more than 0.05 was considered clinically significant.ResultsWhen compared with the overall test set, performance of the DCNN for detecting simple and tension pneumothorax was statistically non-inferior in all subgroups. The DCNN had an AUC of 0.981 (0.976–0.986) for detecting simple pneumothorax and 0.997 (0.995–0.999) for detecting tension pneumothorax.ConclusionsHidden stratification has significant implications for potential failures of deep learning when applied in clinical practice. This study demonstrated that a comprehensively trained DCNN can be resilient to hidden stratification in several clinically meaningful subgroups in detecting pneumothorax.</jats:sec

    A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology

    Get PDF
    Artificial intelligence technology has advanced rapidly in recent years and has the potential to improve healthcare outcomes. However, technology uptake will be largely driven by clinicians, and there is a paucity of data regarding the attitude that clinicians have to this new technology. In June-August 2019 we conducted an online survey of fellows and trainees of three specialty colleges (ophthalmology, radiology/radiation oncology, dermatology) in Australia and New Zealand on artificial intelligence. There were 632 complete responses (n = 305, 230, and 97, respectively), equating to a response rate of 20.4%, 5.1%, and 13.2% for the above colleges, respectively. The majority (n = 449, 71.0%) believed artificial intelligence would improve their field of medicine, and that medical workforce needs would be impacted by the technology within the next decade (n = 542, 85.8%). Improved disease screening and streamlining of monotonous tasks were identified as key benefits of artificial intelligence. The divestment of healthcare to technology companies and medical liability implications were the greatest concerns. Education was identified as a priority to prepare clinicians for the implementation of artificial intelligence in healthcare. This survey highlights parallels between the perceptions of different clinician groups in Australia and New Zealand about artificial intelligence in medicine. Artificial intelligence was recognized as valuable technology that will have wide-ranging impacts on healthcare.Jane Scheetz, Philip Rothschild, Myra McGuinness, Xavier Hadoux, H. Peter Soyer, Monika Janda, James J.J. Condon, Luke Oakden‑Rayner, Lyle J. Palmer, Stuart Keel, Peter van Wijngaarde

    Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines

    Get PDF
    The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77–94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines

    The value of standards for health datasets in artificial intelligence-based applications

    Get PDF
    Artificial intelligence as a medical device is increasingly being applied to healthcare for diagnosis, risk stratification and resource allocation. However, a growing body of evidence has highlighted the risk of algorithmic bias, which may perpetuate existing health inequity. This problem arises in part because of systemic inequalities in dataset curation, unequal opportunity to participate in research and inequalities of access. This study aims to explore existing standards, frameworks and best practices for ensuring adequate data diversity in health datasets. Exploring the body of existing literature and expert views is an important step towards the development of consensus-based guidelines. The study comprises two parts: a systematic review of existing standards, frameworks and best practices for healthcare datasets; and a survey and thematic analysis of stakeholder views of bias, health equity and best practices for artificial intelligence as a medical device. We found that the need for dataset diversity was well described in literature, and experts generally favored the development of a robust set of guidelines, but there were mixed views about how these could be implemented practically. The outputs of this study will be used to inform the development of standards for transparency of data diversity in health datasets (the STANDING Together initiative)

    Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension

    Get PDF
    The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human–AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret, and critically appraise the design and risk of bias for a planned clinical trial

    Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension

    Get PDF
    The SPIRIT 2013 (The Standard Protocol Items: Recommendations for Interventional Trials) statement aims to improve the completeness of clinical trial protocol reporting, by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there is a growing recognition that interventions involving artificial intelligence need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI extension is a new reporting guideline for clinical trials protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI. Both guidelines were developed using a staged consensus process, involving a literature review and expert consultation to generate 26 candidate items, which were consulted on by an international multi-stakeholder group in a 2-stage Delphi survey (103 stakeholders), agreed on in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items, which were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations around the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer-reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial

    Reading Race: AI Recognises Patient's Racial Identity In Medical Images

    Get PDF
    Background: In medical imaging, prior studies have demonstrated disparate AI performance by race, yet there is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images. Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race. Findings: Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities. Our findings hold under external validation conditions, as well as when models are optimized to perform clinically motivated tasks. We demonstrate this detection is not due to trivial proxies or imaging-related surrogate covariates for race, such as underlying disease distribution. Finally, we show that performance persists over all anatomical regions and frequency spectrum of the images suggesting that mitigation efforts will be challenging and demand further study. Interpretation: We emphasize that model ability to predict self-reported race is itself not the issue of importance. However, our findings that AI can trivially predict self-reported race -- even from corrupted, cropped, and noised medical images -- in a setting where clinical experts cannot, creates an enormous risk for all model deployments in medical imaging: if an AI model secretly used its knowledge of self-reported race to misclassify all Black patients, radiologists would not be able to tell using the same data the model has access to

    AI recognition of patient race in medical imaging: a modelling study

    Get PDF
    Background Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. Methods Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. Findings In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. Interpretation The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. Funding National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology
    corecore