31 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Toll-like receptor signaling and stages of addiction

    Get PDF
    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction

    Riboflavin transport by rabbit renal brush border membrane vesicles

    Get PDF
    AbstractThe present study examined riboflavin (RF) uptake by isolated rabbit renal brush border membrane (BBM). RF uptake was linear for up to 30 s and leveled off thereafter reaching an equilibrium with longer incubation. Studies on RF uptake as a function of incubation medium osmolarity indicated that the uptake was the results of transport (61.4%) into the intravesicular space as well as binding (38.6%) to membrane surfaces. The process of RF uptake was saturable as a function of substrate concentration with an apparent Kmof 25.7 ± 7.6 μM and Vmaxof 75.6 ± 14.7 pmol/mg protein/10 s. cis-Addition of unlabeled RF and its structural analogues, lumiflavin and lumichrome, inhibited the uptake of [3H]RF significantly, indicating the involvement of a carrier-mediated process in RF uptake by renal BBM. RF uptake by renal BBM was partly Na+-dependent so that when Na+ was replaced by potassium, choline, lithium or tetramethylammonium, the RF uptake was reduced to ca. 60% of the control. This Na+-dependency was unlikely to be due to Na+-cotransport mechanism because RF uptake occurred without the characteristic ‘overshoot’ phenomenon as for other Na+-cotransport systems and the elimination of transmembrane Na+-gradient by preloading Na+ to the intravesicular space did not affect RF uptake. In contrast, removal of Na+ eliminated the binding component of RF uptake, suggesting the requirement of Na+ for RF binding to BBM. The RF uptake was not affected when extravesicular pH was varied within the physiological pH range of 6.5 to 8.5. No effect on BBM [3H]RF uptake was found when the transmembrane electrical potential was altered by either the presence of anions with different membrane permeability (Cl− = NO3−SO4−gluconate−) or by using nigericin (10 μg/mg protein) with an outwardly or inwardly directed transmembrane K+ gradient. The uptake of RF by BBM vesicles was, however, inhibited by probenecid and organic anion transport inhibitors, 4,4-diiso-thiocyanatostilbene-2,2-disulfonic acid (DIDS, 1 mM) and 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (SITS, 1 mM). In summary, these results demonstrate the existence of a membrane-associated, and organic anion inhibitor-sensitive, carrier system for RF uptake by renal BBM

    In Vitro Propagation and Branching Morphogenesis from Single Ureteric Bud Cells

    No full text
    A method to maintain and rebuild ureteric bud (UB)-like structures from UB cells in vitro could provide a useful tool for kidney regeneration. We aimed in our present study to establish a serum-free culture system that enables the expansion of UB progenitor cells, i.e., UB tip cells, and reconstruction of UB-like structures. We found that fibroblast growth factors or retinoic acid (RA) was sufficient for the survival of UB cells in serum-free condition, while the proliferation and maintenance of UB tip cells required glial cell-derived neurotrophic factor together with signaling from either WNT-β-catenin pathway or RA. The activation of WNT-β-catenin signaling in UB cells by endogenous WNT proteins required R-spondins. Together with Rho kinase inhibitor, our culture system facilitated the expansion of UB tip cells to form UB-like structures from dispersed single cells. The UB-like structures thus formed retained the original UB characteristics and integrated into the native embryonic kidneys

    Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor.

    No full text
    Knowledge on how to maintain and expand nephron progenitor cells (NPC) in vitro is important to provide a potentially valuable source for kidney replacement therapies. In our present study, we examined the possibility of optimizing NPC maintenance in the "re-aggregate" system. We found that Six2-expressing (Six2(+))-NPC could be maintained in aggregates reconstituted with dispersed cells from E12.5 mouse embryonic kidneys for at least up to 21 days in culture. The maintenance of Six2(+)-NPC required the presence of ureteric bud cells. The number of Six2(+)-NPC increased by more than 20-fold at day 21, but plateaued after day 14. In an attempt to further sustain NPC proliferation by passage subculture, we found that the new (P1) aggregates reconstituted from the original (P0) aggregates failed to maintain NPC. However, based on the similarity between P1 aggregates and aggregates derived from E15.5 embryonic kidneys, we suspected that the differentiated NPC in P1 aggregates may interfere with NPC maintenance. In support of this notion, we found that preventing NPC differentiation by DAPT, a γ-secretase inhibitor that inhibits Notch signaling pathway, was effective to maintain and expand Six2(+)-NPC in P1 aggregates by up to 65-fold. The Six2(+)-NPC in P1 aggregates retained their potential to epithelialize upon exposure to Wnt signal. In conclusion, we demonstrated in our present study that the "re-aggregation" system can be useful for in vitro maintenance of NPC when combined with γ-secretase inhibitor

    Expression of differentiated MM markers in E15.5 embryonic kidneys and E12.5 aggregates after 7 days in culture.

    No full text
    <p>qRT-PCR results show that, as compared to E12.5 embryonic kidneys, E15.5 embryonic kidneys had a significant decrease in the expression of NPC marker genes (<i>Six2</i>, <i>Eya1</i> and <i>Gdnf</i>) and a significant increase in the expression of differentiated MM cell marker genes (<i>Podxl1</i>, <i>Nkcc2</i>, <i>Slc5a1</i> and <i>Slc12a3</i>) (A, B). A similar increase in the expression of these differentiated MM cell marker genes was also found with E12.5 aggregates after 7 days in culture (C, D). There was also a significant decrease in the expression of SM cell marker gene (<i>Foxd1</i>) in both E15.5 embryonic kidneys and E12.5 aggregates after 7 days in culture. Data were normalized by <i>Gapdh</i> expression levels and presented as fold changes from:(A) E12.5 embryonic kidneys, (B) E15.5 embryonic kidneys, (C) E12.5 aggregates at day 0, (D) E12.5 aggregatesafter 7 days in culture. (n = 3, * p<0.05, ** p < 0.01)</p

    NPC maintenance in aggregates requires UB cells.

    No full text
    <p><b>(A)</b> Immuno-staining of E11.5 aggregates for NPC marker, Six2 (green), and UB marker, DBA (red). (a) A representative aggregate made from dispersed E11.5 whole embryonic kidney cells and cultured for 7 days. Abundant Six2<sup>+</sup> NPC were present surrounding UB structures. (b) A representative aggregate without UB cells reconstituted from E11.5 Hoxb7-Venus mouse embryonic kidneys by manually separating Venus<sup>+</sup>-UB from the surrounding Venus<sup>-</sup>-mesenchyme cells. No Six2<sup>+</sup> NPC were detected after cultured for 7 days. (c) A representative aggregate without UB cells and treated with Fgf9, Bmp7 and heparin (F9B7H) for 7 days in culture. Only a few Six2<sup>+</sup> NPC were detected. (Scale bar = 500 μm). <b>(B)</b> qRT-PCR results showed significantly lower mRNA expression levels for NPC marker genes (<i>Six2</i>, <i>Cited1</i> and <i>Eya1</i>) in aggregates without UB cells that were either treated or not treated with Fgf9, Bmp7 and heparin (F9B7H). Data were normalized by <i>Gapdh</i> expression levels and presented as fold changes from aggregates reconstituted from whole embryonic kidneys that contained UB cells. (n = 3, ** p < 0.01 vs. aggregates with UB cells)</p
    corecore