9,052 research outputs found
Measurement of , K, p transverse momentum spectra with ALICE in proton-proton collisions at 0.9 and 7 TeV
Results of the measurement of the , K, p transverse momentum
() spectra at mid-rapidity in proton-proton collisions at
TeV are presented. Particle identification was performed using
the energy loss signal in the Inner Tracking System (ITS) and the Time
Projection Chamber (TPC), while information from the Time-of-Flight (TOF)
detector was used to identify particles at higher transverse momentum. From the
spectra at TeV the mean transverse momentum ()
and particle ratios were extracted and compared to results obtained for
collisions at TeV and lower energies.Comment: Quark Matter 2011 proceeding
"Dry-column" chromatography of plant pigments
Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate
Oscillation Phenomena in the disk around the massive black hole Sagittarius A*
We report the detection of radio QPOs with structure changes using the Very
Long Baseline Array (VLBA) at 43 GHz. We found conspicuous patterned changes of
the structure with P = 16.8 +- 1.4, 22.2 +- 1.4, 31.2 +- 1.5, 56.4 +- 6 min,
very roughly in a 3:4:6:10 ratio. The first two periods show a rotating one-arm
structure, while the P = 31.4 min shows a rotating 3-arm structure, as if
viewed edge-on. At the central 50 microasec the P = 56.4 min period shows a
double amplitude variation of those in its surroundings. Spatial distributions
of the oscillation periods suggest that the disk of SgrA* is roughly edge-on,
rotating around an axis with PA = -10 degree. Presumably, the observed VLBI
images of SgrA* at 43 GHz retain several features of the black hole accretion
disk of SgrA* in spite of being obscured and broadened by scattering of
surrounding plasma.Comment: 24 pages, 20 figures, revised version submitted to MN main journal
(2010, Jan., 12th
A Measurement of Proper Motions of SiO Maser Sources in the Galactic Center with the VLBA
We report on the high-precision astrometric observations of maser sources
around the Galactic Center in the SiO J=1--0 v=1 and 2 lines with the VLBA
during 2001 -- 2004. With phase-referencing interferometry referred to the
radio continuum source Sgr A*, accurate positions of masers were obtained for
three detected objects: IRS 10 EE (7 epochs), IRS 15NE (2 epochs), and SiO 6
(only 1 epoch). Because circumstellar masers of these objects were resolved
into several components, proper motions for the maser sources were derived with
several different methods. Combining our VLBA results with those of the
previous VLA observations, we obtained the IRS 10EE proper motion of 76+-3 km
s^{-1} (at 8 kpc) to the south relative to Sgr A*. Almost null proper motion of
this star in the east--west direction results in a net transverse motion of the
infrared reference frame of about 30+-9 km s^{-1} to the west relative to Sgr
A*. The proper-motion data also suggests that IRS 10EE is an astrometric binary
with an unseen massive companion.Comment: High-res. figures are available at
ftp://ftp.nro.nao.ac.jp/nroreport/no656.pdf.gz . PASJ 60, No. 1 (2008) in
pres
Diffraction dissociation in proton-proton collisions at = 0.9 TeV, 2.76 TeV and 7 TeV with ALICE at the LHC
The relative rates of single- and double- diffractive processes were measured
with the ALICE detector by studying properties of gaps in the pseudorapidity
distribution of particles produced in proton-proton collisions at =
0.9 TeV, 2.76 TeV and 7 TeV. ALICE triggering efficiencies are determined for
various classes of events, using a detector simulation validated with data on
inclusive particle production. Cross-sections are determined using van der Meer
scans to measure beam properties and obtain a measurement of the luminosity
Electrochromic orbit control for smart-dust devices
Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario
Differentiation of Cardiac from Noncardiac Pleural Effusions in Cats using Second-Generation Quantitative and Point-of-Care NT-proBNP Measurements
BACKGROUND: Pleural effusion is a common cause of dyspnea in cats. N‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP) measurement, using a first‐generation quantitative ELISA, in plasma and pleural fluid differentiates cardiac from noncardiac causes of pleural effusion. HYPOTHESIS/OBJECTIVES: To determine whether NT‐proBNP measurements using second‐generation quantitative ELISA and point‐of‐care (POC) tests in plasma and pleural fluid distinguish cardiac from noncardiac pleural effusions and how results compare to the first‐generation ELISA. ANIMALS: Thirty‐eight cats (US cohort) and 40 cats (UK cohort) presenting with cardiogenic or noncardiogenic pleural effusion. METHODS: Prospective cohort study. Twenty‐one and 17 cats in the US cohort, and 22 and 18 cats in the UK cohort were classified as having cardiac or noncardiac pleural effusion, respectively. NT‐proBNP concentrations in paired plasma and pleural fluid samples were measured using second‐generation ELISA and POC assays. RESULTS: The second‐generation ELISA differentiated cardiac from noncardiac pleural effusion with good diagnostic accuracy (plasma: sensitivity, 95.2%, specificity, 82.4%; pleural fluid: sensitivity, 100%, specificity, 76.5%). NT‐proBNP concentrations were greater in pleural fluid (719 pmol/L (134–1500)) than plasma (678 pmol/L (61–1500), P = 0.003), resulting in different cut‐off values depending on the sample type. The POC test had good sensitivity (95.2%) and specificity (87.5%) when using plasma samples. In pleural fluid samples, the POC test had good sensitivity (100%) but low specificity (64.7%). Diagnostic accuracy was similar between first‐ and second‐generation ELISA assays. CONCLUSIONS AND CLINICAL IMPORTANCE: Measurement of NT‐proBNP using a quantitative ELISA in plasma and pleural fluid or POC test in plasma, but not pleural fluid, distinguishes cardiac from noncardiac causes of pleural effusion in cats
- …
