240 research outputs found

    Spin-dependent Parton Distributions from Polarized Structure Function Data

    Get PDF
    In the past year, polarized deep inelastic scattering experiments at CERN and SLAC have obtained structure function measurements off proton, neutron and deuteron targets at a level of precision never before achieved. The measurements can be used to test the Bjorken and Ellis-Jaffe sum rules, and also to obtain information on the parton distributions in polarized nucleons. We perform a global leading-order QCD fit to the proton deep inelastic data in order to extract the spin-dependent parton distributions. By using parametric forms which are consistent with theoretical expectations at large and small xx, we find that the quark distributions are now rather well constrained. We assume that there is no significant intrinsic polarization of the strange quark sea. The data are then consistent with a modest amount of the proton's spin carried by the gluon, although the shape of the gluon distribution is not well constrained, and several qualitatively different shapes are suggested. The spin-dependent distributions we obtain can be used as input to phenomenological studies for future polarized hadron-hadron and lepton-hadron colliders.Comment: 23 pages, DTP/94/3

    Excitation of spin-isospin giant resonance states in 12c(gamma,pi+)12b using tagged photons

    Get PDF
    The angular distribution of positive pions from the reaction, 12C(gamma,pi+)12B* were measured at five angles (theta= 35°, 55°, 90°, 125°, 145°) using the tagged photons in the range 176 < Egamma < 182 MeV. The pi+ spectra were measured with a system of DeltaE-E plastic scintillator telescopes. The separation of pi+ from other particles was achieved by measuring the DeltaE vs. E scatter plot and also by observing the delayed decay muons from the stopped pi+ in the E-detector

    Biomechanical risk factors for lower extremity stress fracture

    Get PDF
    Objectives: Stress fracture injuries disproportionately affect athletes and military service members and little is known about the modifiable biomechanical risk factors associated with these injuries. The purpose of this study was to prospectively examine the association between neuromuscular and biomechanical factors upon entry to military service and the subsequent incidence of lower-extremity stress fracture injury during four years of follow-up. Methods: We analyzed data from the JUMP-ACL cohort, an existing prospective cohort study of military cadets. JUMP-ACL conducted detailed motion analysis during a jump landing task at the initiation of each subject’s military career. We limited our analyses to the class years 2009-2013 (i.e., subjects who completed baseline testing in 2005-2008). There were 1895 subjects available for analysis. Fifty-two subjects reported a history of stress fracture at baseline and were excluded from further analysis leaving 1843 subjects. Incident lower extremity-stress fracture cases were identified through the Defense Medical Surveillance System and the Cadet Injury and Illness Tracking System during the follow-up period. The electronic medical records of each potential incident case were reviewed and each case was confirmed by an adjudication committee consisting of two sports medicine fellowship trained orthopaedic surgeons. The primary outcome of interest was the incidence rate of lower-extremity stress fracture during the follow-up period. The association between incident stress fracture and sagittal, frontal, and transverse plane hip and knee kinematics during the jump-landing task were examined at initial contact (IC), 15%(T15), 50%(T50), 85%(T85) and 100%(T100) of stance phase. Descriptive plots of all biomechanical variables along with 95% confidence intervals (CI) were generated during the stance phase of the jump landing task. Univariate and multivariable Poisson regression models were used to estimate the association between baseline biomechanical factors and the incidence rate of lower-extremity stress fracture during follow-up. Results: Overall, 94 (5.1%, 95%CI: 4.14, 6.21) subjects sustained an incident stress fracture during the follow-up period. The incidence rate for stress fracture injuries among females was nearly three times greater when compared to males (IRR=2.86, 95%CI: 1.88, 4.34, p<0.001). Compared to those with greater than 5° of knee valgus, subjects with neutral or varus knee alignment experienced incidence rates for stress fracture that were 43%-53% lower at IC (IRR=0.57, 95%CI: 0.29, 1.11, p=0.10), T50 (IRR=0.47, 95%CI=0.23, 1.00, p=0.05), and T85 (IRR=0.53, 95%CI: 0.29, 0.98, p=0.04). Subjects with greater than 5° of internal knee rotation exhibited rates for stress fracture that were 2-4 times higher at T15 (IRR=2.31, 95%CI: 1.01, 5.27, p=0.05), T50 (IRR=3.98, 95%CI: 0.99, 16.00, p=0.05), and T85 (IRR=2.31, 95%CI: 0.86, 6.23, p=0.10), when compared to those with neutral or external knee rotation alignment. Conclusion: Several potentially modifiable biomechanical factors at the time of entry into military service appear to be associated with the subsequent rate of stress fracture. It is possible that injury prevention programs targeted to address these biomechanical movement patterns may reduce the risk of stress fracture injury in athletes and military service members

    Upgrade of the Glasgow photon tagging spectrometer for Mainz MAMI-C

    Full text link
    The Glasgow photon tagging spectrometer at Mainz has been upgraded so that it can be used with the 1500 MeV electron beam now available from the Mainz microtron MAMI-C. The changes made and the resulting properties of the spectrometer are discussed.Comment: 20 pages, 12 figure

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi

    Factorization Breaking in Dijet Photoproduction with a Leading Neutron

    Get PDF
    The production of dijets with a leading neutron in ep-interactions at HERA is calculated in leading order and next-to-leading order of perturbative QCD using a pion-exchange model. Differential cross sections for deep-inelastic scattering (DIS) and photoproduction are presented as a function of several kinematic variables. By comparing the theoretical predictions for DIS dijets to recent H1 data, the pion flux factor together with the parton distribution functions of the pion is determined. The dijet cross sections in photoproduction show factorization breaking if compared to the H1 photoproduction data. The suppression factor is S = 0.48 (0.64) for resolved (global) suppression.Comment: 16 pages, 5 figure

    Global QCD Analysis and the CTEQ Parton Distributions

    Get PDF
    The CTEQ program for the determination of parton distributions through a global QCD analysis of data for various hard scattering processes is fully described. A new set of distributions, CTEQ3, incorporating several new types of data is reported and compared to the two previous sets of CTEQ distributions. Comparison with current data is discussed in some detail. The remaining uncertainties in the parton distributions and methods to further reduce them are assessed. Comparisons with the results of other global analyses are also presented.Comment: (Change in Latex style only: 2up style removed since many don't have it.) 35 pages, 23 figures separately submitted as uuencoded compressed ps-file; Michigan State Report # MSU-HEP/41024 and CTEQ 40

    The leading particle effect from light quark fragmentation in charm hadroproduction

    Get PDF
    The asymmetry of DD^- and D+D^+ meson production in πN\pi^-N scattering observed by the E791 experiment is a typical phenomenon known as the leading particle effect in charm hadroproducton. We show that the phenomenon can be explained by the effect of light quark fragmentation into charmed hadrons (LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791 experiment. A comparison is made with the estimate of the LQF effect from prompt like-sign dimuon rate in neutrino experiments. The influence of the LQF effect on the measurement of nucleon strange distribution asymmetry from charged current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ

    Evidence for SU(3) symmetry breaking from hyperon production

    Get PDF
    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: Set-1 with SU(3) flavor symmetry and Set-2 with SU(3) flavor symmetry breaking in HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict polarizations of the octet baryons produced in e+ee^+e^- annihilation and semi-inclusive deeply lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ\Lambda polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get a collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed.Comment: 3 tables, 14 figure

    QCD and Intrinsic Heavy Quark Predictions for Leading Charm and Beauty Hadroproduction

    Full text link
    Recent experiments at Fermilab and CERN have observed a strong asymmetry between the hadroproduction cross sections of leading DD mesons, containing projectile valence quarks, and nonleading charmed mesons, without projectile valence quarks. The observed correlations of the π±ND±X\pi^{\pm} N \to D^\pm X cross section with the projectile charge violates the usual assumption that heavy quark jet fragmentation factorizes. We examine the asymmetry between leading and nonleading charm production as a function of xfx_f and pT2p_T^2 assuming a two-component model combining leading-twist fusion subprocesses and charm production from intrinsic heavy quark Fock states. We predict a sizable asymmetry at low pT2p_T^2 and high xfx_f from coalescence of the charm quarks with the comoving spectator quarks of the projectile. An intrinsic ccc \overline c production cross section of 0.5 μ\mub is sufficient to explain both the magnitude and kinematic dependence of the asymmetry. In contrast, the charm jet hadronization mechanisms contained in PYTHIA predict a sizeable leading charm asymmetry even at low xF.x_F. The two-component model is extended to predict the asymmetry in BB meson production in proton-proton and pion-proton interactions.Comment: 16 pages LaTeX with 6 postscript figures available upon request, LBL-35380, SLAC-PUB-646
    corecore