33,372 research outputs found

    The Deep SWIRE Field III. WIYN Spectroscopy

    Full text link
    We present the results of spectroscopy using HYDRA on the WIYN 3.5m telescope of objects in the deep SWIRE radio field. The goal of the project was to determine spectroscopic redshifts for as many of the brighter objects in the field as possible, especially those detected in the radio and at 24 microns. These redshifts are primarily being used in studies of galaxy evolution and the connection of that evolution to AGN and star-formation. Redshifts measured for 365 individual objects are reported. The redshifts range from 0.03 to 2.5, mostly with z < 0.9. The sources were selected to be within the WIYN HYDRA field of approximately 30' in radius from the center of the SWIRE deep field, 10h46m00s, 59d 01'00" (J2000). Optical sources for spectroscopic observation were selected from a r-band image of the field. A priority list of spectroscopic targets was established in the following order: 20cm detections, 24 micron detections, galaxies with r < 20 and the balance made up of fainter galaxies in the field. We provide a table listing the galaxy positions, measured redshift and error, and note any emission lines that were visible in the spectrum. In practice almost all the galaxies with r < 19 were observed including all of the radio sources and most of the 24 microns sources with r < 20 and a sample of radio sources which had fainter optical counterparts on the r-band image.Comment: 6 pages, 3 tables, 2 figures, full electronic tables at http://www.aoc.nrao.edu/~fowen/papers/SWIRE/WIYNpaper3/, accepted ApJ Suppl Serie

    Development of a character, line and point display system

    Get PDF
    A compact graphics terminal for use as the input to a computerized medical records system is described. The principal mode of communication between the terminal and the records system is by checklists and menu selection. However, the terminal accepts short, handwritten messages as well as conventional alphanumeric input. The terminal consists of an electronic tablet, a display, a microcomputer controller, a character generator, and a refresh memory for the display. An Intel SBC 80/10 microcomputer controls the flow of information and a 16 kilobyte memory stores the point-by-point array of information to be displayed. A specially designed interface continuously generates the raster display without the intervention of the microcomputer

    The evaporation valley in the Kepler planets

    Full text link
    A new piece of evidence supporting the photoevaporation-driven evolution model for low-mass, close-in exoplanets was recently presented by the California-Kepler-Survey. The radius distribution of the Kepler planets is shown to be bimodal, with a ``valley' separating two peaks at 1.3 and 2.6 Rearth. Such an ``evaporation-valley' had been predicted by numerical models previously. Here, we develop a minimal model to demonstrate that this valley results from the following fact: the timescale for envelope erosion is the longest for those planets with hydrogen/helium-rich envelopes that, while only a few percent in weight, double its radius. The timescale falls for envelopes lighter than this because the planet's radius remains largely constant for tenuous envelopes. The timescale also drops for heavier envelopes because the planet swells up faster than the addition of envelope mass. Photoevaporation, therefore, herds planets into either bare cores ~1.3 Rearth, or those with double the core's radius (~2.6 Rearth). This process mostly occurs during the first 100 Myrs when the stars' high energy flux are high and nearly constant. The observed radius distribution further requires that the Kepler planets are clustered around 3 Mearth in mass, are born with H/He envelopes more than a few percent in mass, and that their cores are similar to the Earth in composition. Such envelopes must have been accreted before the dispersal of the gas disks, while the core composition indicates formation inside the ice-line. Lastly, the photoevaporation model fails to account for bare planets beyond ~30-60 days, if these planets are abundant, they may point to a significant second channel for planet formation, resembling the Solar-System terrestrial planets.Comment: 15 pages, published in Ap

    Employers skill survey: skills, local areas and unemployment

    Get PDF
    corecore