11 research outputs found

    Eight-month-old infants’ behavioural responses to peers’ emotions as related to the asymmetric frontal cortex activity

    Get PDF
    Infants are sensitive to and converge emotionally with peers’ distress. It is unclear whether these responses extend to positive affect and whether observing peer emotions motivates infants’ behaviors. This study investigates 8-month-olds’ asymmetric frontal EEG during peers’ cry and laughter, and its relation to approach and withdrawal behaviors. Participants observed videos of infant crying or laughing during two separate sessions. Frontal EEG alpha power was recorded during the first, while infants’ behaviors and emotional expressions were recorded during the second session. Facial and vocal expressions of affect suggest that infants converge emotionally with their peers’ distress, and, to a certain extent, with their happiness. At group level, the crying peer elicited right lateralized frontal activity. However, those infants with reduced right and increased left frontal activity in this situation, were more likely to approach their peer. Overall, 8-month-olds did not show asymmetric frontal activity in response to peer laughter. But, those infants who tended to look longer at their happy peer were more likely to respond with left lateralized frontal activity. The link between variations in left frontal activity and simple approach behaviors indicates the presence of a motivational dimension to infants’ responses to distressed peers

    Transgenic expression of prothymosin alpha on zebrafish epidermal cells promotes proliferation and attenuates UVB-induced apoptosis

    No full text
    [[abstract]]This study generated a transgenic zebrafish line Tg(k18:Ptmaa-RFP) with overexpression of Prothymosin alpha type a (Ptmaa) in the skin epidermis. Red fluorescence first appears very weakly in the early stage, become stronger and mainly restricted in the nuclei of the epithelial cells from 3 dpf-larvae to adult fish. However, no evident morphological abnormalities were observed. Thus, overexpression of Ptmaa alone is not sufficient to cause disorganized growths or even cancer in zebrafish skin. Molecular and histological evidences showed that Tg(k18:Ptmaa-RFP) embryos have more proliferating cells in the pelvic fins [WT: 3.92 ± 7.15; Tg(k18:Ptmaa-RFP): 38.00 ± 10.87] and thicker skin [WT: 10.98 ± 1.41 μm; Tg(k18:Ptmaa-RFP): 14.02 ± 1.32 μm], indicating that overexpression of Ptmaa can promote proliferation. On the other hand, fewer apoptotic signals were found when Tg(k18:Ptmaa-RFP) embryos were exposed to UVB. Together with quantitative RT-PCR data, we suggest that UVB-induced epidermal cell apoptosis of zebrafish larvae can be attenuated by overexpression of Ptmaa through the enhancement of transcriptions of bcl2 mRNAs. Taken together, we conclude that overexpression of Ptmaa in zebrafish epidermal cells promotes proliferation and attenuates UVB-induced apoptosis but does not cause skin cancer.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]NL
    corecore