8 research outputs found

    A Fullerene-platinum Complex for Direct Functional Patterning of Single Metal Atom-embedded Carbon Nanostructures

    No full text
    The development of patterning materials (“resists”) at the nanoscale involves two distinct trends: one is toward high sensitivity and resolution for miniaturization, the other aims at functionalization of the resists to realize bottom-up construction of distinct nanoarchitectures. Patterning of carbon nanostructures, a seemingly ideal application for organic functional resists, has been highly reliant on complicated pattern transfer processes because of a lack of patternable precursors. Herein, we present a fullerene–metal coordination complex as a fabrication material for direct functional patterning of sub-10 nm metal-containing carbon structures. The attachment of one platinum atom per fullerene molecule not only leads to significant improvement of sensitivity and resolution but also enables stable atomic dispersion of the platinum ions within the carbon matrix, which may gain fundamentally new interest in functional patterning of hierarchical carbon nanostructures

    Complexes of nitric oxide with water and imidazole

    Get PDF
    R.C-O and R.S acknowledge a research fellowship from Universidad AutĂłnoma de Madrid. E.S-G and K.B-R acknowledge Liebig and doctoral stipends, respectively, from the Fonds der Chemischen Industrie, Germany. E.S-G acknowledges the support of the Cluster of Excellence RESOLV (EXC 1069) and the Collaborative Research Center SFB 1093, both funded by the Deutsche Forschungsgemeinschaft. J.M.GV thanks MICINN (Project No. CTQ2010-12932) and AECID (Project No. A1/035856/11)
    corecore