4,868 research outputs found

    Channel Pruning Guided by Classification Loss and Feature Importance

    Full text link
    In this work, we propose a new layer-by-layer channel pruning method called Channel Pruning guided by classification Loss and feature Importance (CPLI). In contrast to the existing layer-by-layer channel pruning approaches that only consider how to reconstruct the features from the next layer, our approach additionally take the classification loss into account in the channel pruning process. We also observe that some reconstructed features will be removed at the next pruning stage. So it is unnecessary to reconstruct these features. To this end, we propose a new strategy to suppress the influence of unimportant features (i.e., the features will be removed at the next pruning stage). Our comprehensive experiments on three benchmark datasets, i.e., CIFAR-10, ImageNet, and UCF-101, demonstrate the effectiveness of our CPLI method.Comment: AAAI202

    Problems and Countermeasures in Urban Greenway Construction

    Get PDF
    In terms of landscape design, urban greenway refers to the green landscape roads built for the pedestrians and the cyclists in cities. In recent years, many regions and cities in China have begun to enter the urban greenway construction boom and some urban greenway constructions have achieved periodical goals. However, many problems have emerged in the process of urban greenway construction in China, for example, lack of legal basis, biased understanding of the urban greenway of the public and weak scientific research, etc. In order to promote the development of urban greenway construction in China, the article discussed the existing problems of urban greenway construction in China and proposed corresponding solutions, based on the research of the urban greenway construction and the analysis of the characteristics of different urban developments

    Threshold for the Outbreak of Cascading Failures in Degree-degree Uncorrelated Networks

    Get PDF
    In complex networks, the failure of one or very few nodes may cause cascading failures. When this dynamical process stops in steady state, the size of the giant component formed by remaining un-failed nodes can be used to measure the severity of cascading failures, which is critically important for estimating the robustness of networks. In this paper, we provide a cascade of overload failure model with local load sharing mechanism, and then explore the threshold of node capacity when the large-scale cascading failures happen and un-failed nodes in steady state cannot connect to each other to form a large connected sub-network. We get the theoretical derivation of this threshold in degree-degree uncorrelated networks, and validate the effectiveness of this method in simulation. This threshold provide us a guidance to improve the network robustness under the premise of limited capacity resource when creating a network and assigning load. Therefore, this threshold is useful and important to analyze the robustness of networks.Comment: 11 pages, 4 figure

    Style Aggregated Network for Facial Landmark Detection

    Full text link
    © 2018 IEEE. Recent advances in facial landmark detection achieve success by learning discriminative features from rich deformation of face shapes and poses. Besides the variance of faces themselves, the intrinsic variance of image styles, e.g., grayscale vs. color images, light vs. dark, intense vs. dull, and so on, has constantly been overlooked. This issue becomes inevitable as increasing web images are collected from various sources for training neural networks. In this work, we propose a style-aggregated approach to deal with the large intrinsic variance of image styles for facial landmark detection. Our method transforms original face images to style-aggregated images by a generative adversarial module. The proposed scheme uses the style-aggregated image to maintain face images that are more robust to environmental changes. Then the original face images accompanying with style-aggregated ones play a duet to train a landmark detector which is complementary to each other. In this way, for each face, our method takes two images as input, i.e., one in its original style and the other in the aggregated style. In experiments, we observe that the large variance of image styles would degenerate the performance of facial landmark detectors. Moreover, we show the robustness of our method to the large variance of image styles by comparing to a variant of our approach, in which the generative adversarial module is removed, and no style-aggregated images are used. Our approach is demonstrated to perform well when compared with state-of-the-art algorithms on benchmark datasets AFLW and 300-W. Code is publicly available on GitHub: https://github.com/D-X-Y/SAN
    • …
    corecore