10,702 research outputs found

    Excitation of atomic hydrogen to the metasable 2 2S1/2 state by electron impact

    Get PDF
    Atomic hydrogen excitation to metastable 2 /2/ S sub 1/2 state by electron impac

    Polarization of Lyman alpha radiation emitted by H/2S/ atoms in weak electric fields

    Get PDF
    Polarization prediction in modulated beam of ground state hydrogen atoms crossed by dc electron bea

    Rectenna system design

    Get PDF
    The function of the rectenna in the solar power satellite system is described and the basic design choices based on the desired microwave field concentration and ground clearance requirements are given. One important area of concern, from the EMI point of view, harmonic reradiation and scattering from the rectenna is also designed. An optimization of a rectenna system design to minimize costs was performed. The rectenna cost breakdown for a 56 w installation is given as an example

    Impact of strong disorder on the static magnetic properties of the spin-chain compound BaCu2SiGeO7

    Full text link
    The disordered quasi-1D magnet BaCu2SiGeO7 is considered as one of the best physical realizations of the random Heisenberg chain model, which features an irregular distribution of the exchange parameters and whose ground state is predicted to be the scarcely investigated random-singlet state (RSS). Based on extensive 29Si NMR and magnetization studies of BaCu2SiGeO7, combined with numerical Quantum Monte Carlo simulations, we obtain remarkable quantitative agreement with theoretical predictions of the random Heisenberg chain model and strong indications for the formation of a random-singlet state at low temperatures in this compound. As a local probe, NMR is a well-adapted technique for studying the magnetism of disordered systems. In this case it also reveals an additional local transverse staggered field (LTSF), which affects the low-temperature properties of the RSS. The proposed model Hamiltonian satisfactorily accounts for the temperature dependence of the NMR line shapes.Comment: 10 pages, 7 figure

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    Directed Chaotic Transport in Hamiltonian Ratchets

    Full text link
    We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic transport in the absence of an average force. We discuss general conditions for such directed transport, like a mixed classical phase space, and elucidate a sum rule that relates the contributions of different phase-space components to transport with each other. We show that regular ratchet transport can be directed against an external potential gradient while chaotic ballistic transport is restricted to unbiased systems. For quantized Hamiltonian ratchets we study transport in terms of the evolution of wave packets and derive a semiclassical expression for the distribution of level velocities which encode the quantum transport in the Floquet band spectra. We discuss the role of dynamical tunneling between transporting islands and the chaotic sea and the breakdown of transport in quantum ratchets with broken spatial periodicity.Comment: 22 page
    • …
    corecore