14,243 research outputs found

    Holographic quantum states

    Get PDF
    We show how continuous matrix product states of quantum field theories can be described in terms of the dissipative non-equilibrium dynamics of a lower-dimensional auxiliary boundary field theory. We demonstrate that the spatial correlation functions of the bulk field can be brought into one-to-one correspondence with the temporal statistics of the quantum jumps of the boundary field. This equivalence: (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory; (2) gives an explicit construction of the boundary field theory allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter; and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.Comment: 6 pages, 1 figure. Emphasis change

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling

    Full text link
    The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst of the recurrent nova RS Oph was observed twice with Chandra and once with XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after outburst. We confirm a 35-sec period on day 54.0 and found that it originates from the SSS emission and not from the shock. We discus the bound-free absorption by neutral elements in the line of sight, resonance absorption lines plus self-absorbed emission line components, collisionally excited emission lines from the shock, He-like intersystem lines, and spectral changes during an episode of high-amplitude variability. We find a decrease of the oxygen K-shell absorption edge that can be explained by photoionization of oxygen. The absorption component has average velocities of -1286+-267 km/s on day 39.7 and of -771+-65 km/s on day 66.9. The wavelengths of the emission line components are consistent with their rest wavelengths as confirmed by measurements of non-self absorbed He-like intersystem lines. We have evidence that these lines originate from the shock rather than the outer layers of the outflow and may be photoexcited in addition to collisional excitations. We found collisionally excited emission lines that are fading at wavelengths shorter than 15A that originate from the radiatively cooling shock. On day 39.5 we find a systematic blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i ratios which indicates either high densities or significant UV radiation near the plasma where the emission lines are formed. During the phase of strong variability the spectral hardness light curve overlies the total light curve when shifted by 1000sec. This can be explained by photoionization of neutral oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author Woodward adde

    General entanglement scaling laws from time evolution

    Full text link
    We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and making use of the powerful tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions whose geometric entropy scales logarithmically with block length. Implications for the classical simulatability are outlined.Comment: 4 pages, 1 figure (see also related work by S. Bravyi, M. Hastings, and F. Verstraete, quant-ph/0603121); replaced with final versio

    Gamma-Ray Bursts observed by XMM-Newton

    Full text link
    Analysis of observations with XMM-Newton have made a significant contribution to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area, bandpass and resolution of the EPIC instrument permit the study of a wide variety of spectral features. In particular, strong, time-dependent, soft X-ray emission lines have been discovered in some bursts. The emission mechanism and energy source for these lines pose major problems for the current generation of GRB models. Other GRBs have intrinsic absorption, possibly related to the environment around the progenitor, or possible iron emission lines similar to those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of GRBs discovered by the Swift satellite should help unlock the origin of the GRB phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting, Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica Italian

    Black hole hunting in the Andromeda Galaxy

    Full text link
    We present a new technique for identifying stellar mass black holes in low mass X-ray binaries (LMXBs), and apply it to XMM-Newton observations of M31. We examine X-ray time series variability seeking power density spectra (PDS) typical of LMXBs accreting at a low accretion rate (which we refer to as Type A PDS); these are very similar for black hole and neutron star LMXBs. Galactic neutron star LMXBs exhibit Type A PDS at low luminosities (~10^36--10^37 erg/s) while black hole LMXBs can exhibit them at luminosities >10^38 erg/s. We propose that Type A PDS are confined to luminosities below a critical fraction of the Eddington limit, lcl_c that is constant for all LMXBs; we have examined asample of black hole and neutron star LMXBs and find they are all consistent with lcl_c = 0.10+/-0.04 in the 0.3--10 keV band. We present luminosity and PDS data from 167 observations of X-ray binaries in M31 that provide strong support for our hypothesis. Since the theoretical maximum mass for a neutron star is \~3.1 M_Sun, we therefore assert that any LMXB that exhibits a Type A PDS at a 0.3--10 keV luminosity greater than 4 x 10^37 erg/s is likely to contain a black hole primary. We have found eleven new black hole candidates in M31 using this method. We focus on XMM-Newton observations of RX J0042.4+4112, an X-ray source in M31 and find the mass of the primary to be 7+/-2 M_Sun, if our assumptions are correct. Furthermore, RX J0042.4+4112 is consistently bright in \~40 observations made over 23 years, and is likely to be a persistently bright LMXB; by contrast all known Galactic black hole LMXBs are transient. Hence our method may be used to find black holes in known, persistently bright Galactic LMXBs and also in LMXBs in other galaxies.Comment: 6 Pages, 6 figures. To appear in the conference proceedings of "Interacting Binaries: Accretion, Evolution and Outcomes" (Cefalu, July 4-10 2004

    Spectral evolution and the onset of the X-ray GRB afterglow

    Full text link
    Based on light curves from the Swift Burst Analyser, we investigate whether a `dip' feature commonly seen in the early-time hardness ratios of Swift-XRT data could arise from the juxtaposition of the decaying prompt emission and rising afterglow. We are able to model the dip as such a feature, assuming the afterglow rises as predicted by Sari & Piran (1999). Using this model we measure the initial bulk Lorentz factor of the fireball. For a sample of 23 GRBs we find a median value of Gamma_0=225, assuming a constant-density circumburst medium; or Gamma_0=93 if we assume a wind-like medium.Comment: 4 pages, 3 figures. To appear in the proceedings of GRB 2010, Annapolis November 2010. (AIP Conference proceedings

    The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell

    Get PDF
    The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite

    A universal GRB photon energy-peak luminosity relation

    Full text link
    The energetics and emission mechanism of GRBs are not well understood. Here we demonstrate that the instantaneous peak flux or equivalent isotropic peak luminosity, L_iso ergs s^-1, rather than the integrated fluence or equivalent isotropic energy, E_iso ergs, underpins the known high-energy correlations. Using new spectral/temporal parameters calculated for 101 bursts with redshifts from BATSE, BeppoSAX, HETE-II and Swift we describe a parameter space which characterises the apparently diverse properties of the prompt emission. We show that a source frame characteristic-photon-energy/peak luminosity ratio, K_z, can be constructed which is constant within a factor of 2 for all bursts whatever their duration, spectrum, luminosity and the instrumentation used to detect them. The new parameterization embodies the Amati relation but indicates that some correlation between E_peak and E_iso follows as a direct mathematical inference from the Band function and that a simple transformation of E_iso to L_iso yields a universal high energy correlation for GRBs. The existence of K_z indicates that the mechanism responsible for the prompt emission from all GRBs is probably predominantly thermal.Comment: Submitted to Ap
    corecore