1,033 research outputs found

    On Echo Outbursts and ER UMa Supercycles in SU UMa-type Cataclysmic Variables

    Get PDF
    I present a variation on Osaki's tidal-thermal-instability model for SU UMa behavior. I suggest that in systems with the lowest mass ratios, the angular-momentum dissipation in an eccentric disk is unable to sustain the disk on the hot side of the thermal instability. This decoupling of the tidal and thermal instabilities in systems with q < 0.07 allows a better explanation of the `echo' outbursts of EG Cnc and the short supercycles of RZ LMi and DI UMa. The idea might also apply to the soft X-ray transients.Comment: To appear in PASP, April 2001 (6 pages, 4 figs

    Superhumps in a Peculiar SU UMa-Type Dwarf Nova ER Ursae Majoris

    Get PDF
    We report the photometry of a peculiar SU UMa-type dwarf nova - ER UMa for ten nights during 1998 December and 1999 March covering a complete rise to the supermaximum and a normal outburst cycle. Superhumps have been found during the rise to the superoutburst. A negative superhump appeared in Dec.22 light curve, while the superhump on the next night became positive and had large amplitude and distinct waveform from that of the previous night. In the normal outburst we captured, superhumps with larger or smaller amplitudes seem to always exist, although it is not necessarily true for every normal outburst. These results show great resemblance with V1159 Ori (Patterson et al. 1995). It is more likely that superhumps occasionally exist at essentially all phases of the eruption cycles of ER UMa stars, which should be considered in modeling.Comment: 4 pages, 5 figures, Accepted by ApJ Letter

    Evolution of Giant Planets in Eccentric Disks

    Get PDF
    We investigate the interaction between a giant planet and a viscous circumstellar disk by means of high-resolution, two-dimensional hydrodynamical simulations. We consider planet masses that range from 1 to 3 Jupiter masses (Mjup) and initial orbital eccentricities that range from 0 to 0.4. We find that a planet can cause eccentricity growth in a disk region adjacent to the planet's orbit, even if the planet's orbit is circular. Disk-planet interactions lead to growth in a planet's orbital eccentricity. The orbital eccentricities of a 2 Mjup and a 3 Mjup planet increase from 0 to 0.11 within about 3000 orbits. Over a similar time period, the orbital eccentricity of a 1 Mjup planet grows from 0 to 0.02. For a case of a 1 Mjup planet with an initial eccentricity of 0.01, the orbital eccentricity grows to 0.09 over 4000 orbits. Radial migration is directed inwards, but slows considerably as a planet's orbit becomes eccentric. If a planet's orbital eccentricity becomes sufficiently large, e > ~0.2, migration can reverse and so be directed outwards. The accretion rate towards a planet depends on both the disk and the planet orbital eccentricity and is pulsed over the orbital period. Planet mass growth rates increase with planet orbital eccentricity. For e~0.2 the mass growth rate of a planet increases by approximately 30% above the value for e=0. For e > ~0.1, most of the accretion within the planet's Roche lobe occurs when the planet is near the apocenter. Similar accretion modulation occurs for flow at the inner disk boundary which represents accretion toward the star.Comment: 20 pages 16 figures, 3 tables. To appear in The Astrophysical Journal vol.652 (December 1, 2006 issue

    The statistical significance of the superhump signal in U Gem

    Get PDF
    Although its well determined mass ratio of q=\Msec/\Mwd=0.357\pm0.007 should avoid superoutbursts according to the thermal tidal instability model, the prototypical dwarf nova U Gem experienced in 1985 an extraordinary long outburst resembling very much superoutbursts observed in SU UMa systems. Recently, the situation for the model became even worse as superhump detections have been reported for the 1985 outburst of U Gem. The superhump signal is noisy and the evidence provided by simple periodograms seems to be weak. Therefore and because of the importance for our understanding of superoutbursts and superhumps, we determine the statistical significance of the recently published detection of superhumps in the AAVSO light curve of the famous long 1985 outburst of U Gem. Using Lomb-Scargle periodograms, analysis of variance (AoV), and Monte-Carlo methods we analyse the 160 visual magnitudes obtained by the AAVSO during the outburst and relate our analyse to previous superhump detections. The 160 data points of the outburst alone do not contain a statistically significant period. However, using additionally the characteristics of superhumps detected previously in other SU UMa systems and searching only for signals that are consistent with these, we derive a 2σ2\sigma significance for the superhump signal. The alleged appearance of an additional superhump at the end of the outbursts appears to be statistically insignificant. Although of weak statistical significance, the superhump signal of the long 1985 outburst of U Gem can be interpreted as further indication for the SU UMa nature of this outburst. This further contradicts the tidal instability model as the explanation for the superhump phenomenon.Comment: 7 pages, 7 figures, accepted for publication in A&

    Curious Variables Experiment (CURVE). CCD photometry of active dwarf nova DI UMa

    Full text link
    We report an analysis of photometric behaviour of DI UMa, an extremely active dwarf nova. The observational campaign (completed in 2007) covers five superoutbursts and four normal outbursts. We examined principal parameters of the system to understand peculiarities of DI UMa, and other active cataclysmic variables. Based on precise photometric measurements, temporal light curve behaviour, O-C analysis, and power spectrum analysis, we investigated physical parameters of the system. We found that the period of the supercycle now equals 31.45 +/-0.3 days. Observations during superoutbursts infer that the period of superhumps equals P_sh = 0.055318(11) days (79.66 +/- 0.02 min). During quiescence, the light curve reveals a modulation of period P_orb = 0.054579(6) days (78.59 +/- 0.01 min), which we interpret as the orbital period of the binary system. The values obtained allowed us to determine a fractional period excess of 1.35% +/- 0.02%, which is surprisingly small compared to the usual value for dwarf novae (2%-5%). A detailed O-C analysis was performed for two superoutbursts with the most comprehensive coverage. In both cases, we detected an increase in the superhump period with a mean rate of dot_P/P_sh = 4.4(1.0)*10^{-5}. Based on these measurements, we confirm that DI UMa is probably a period bouncer, an old system that reached its period minimum a long time ago, has a secondary that became a degenerate brown dwarf, the entire system evolving now toward longer periods. DI UMa is an extremely interesting object because we know only one more active ER UMa star with similar characteristics (IX Dra).Comment: Accepted for publication in Astronomy & Astrophysic

    In-the-Gap SU UMa-Type Dwarf Nova, Var73 Dra with a Supercycle of about 60 Days

    Full text link
    An intensive photometric-observation campaign of the recently discovered SU UMa-type dwarf nova, Var73 Dra was conducted from 2002 August to 2003 February. We caught three superoutbursts in 2002 October, December and 2003 February. The recurrence cycle of the superoutburst (supercycle) is indicated to be \sim60 d, the shortest among the values known so far in SU UMa stars and close to those of ER UMa stars. The superhump periods measured during the first two superoutbursts were 0.104885(93) d, and 0.10623(16) d, respectively. A 0.10424(3)-d periodicity was detected in quiescence. The change rate of the superhump period during the second superoutburst was 1.7×1031.7\times10^{-3}, which is an order of magnitude larger than the largest value ever known. Outburst activity has changed from a phase of frequent normal outbursts and infrequent superoutbursts in 2001 to a phase of infrequent normal outbursts and frequent superoutbursts in 2002. Our observations are negative to an idea that this star is an related object to ER UMa stars in terms of the duty cycle of the superoutburst and the recurrence cycle of the normal outburst. However, to trace the superhump evolution throughout a superoutburst, and from quiescence more effectively, may give a fruitful result on this matter.Comment: 9 pages, 8 figures, submitted to A&

    Realization of a collective decoding of codeword states

    Full text link
    This was also extended from the previous article quant-ph/9705043, especially in a realization of the decoding process.Comment: 6 pages, RevTeX, 4 figures(EPS

    Mass transfer in tidally unstable compact binaries

    Full text link
    The 2001 outburst of WZ Sagittae has shown the most compelling evidence yet for an enhancement of the mass transfer rate from the donor star during a dwarf nova outburst in the form of hot-spot brightening. I show that even in this extreme case, the brightening can be attributed to tidal heating near the interaction point of an accretion stream with the expanding edge of an eccentric accretion disc, with no need at all for an increase in the mass transfer rate. Furthermore, I confirm previous suggestions that an increase in mass transfer rate through the stream damps any eccentricity in an accretion disc and suppresses the appearance of superhumps, in contradiction to observations. Tidal heating is expected to be most significant in systems with small mass ratios. It follows that systems like WZ Sagittae - which has a tiny mass ratio - are those most likely to show a brightening in the hot-spot region.Comment: 6 pages, 5 figures (eps/ps). Accepted for publication in MNRA

    SDSS J210014.12+004446.0: A New Dwarf Nova with Quiescent Superhumps?

    Full text link
    We report follow-up observations of the Sloan Digital Sky Survey Cataclysmic Variable SDSS J210014.12+004446.0 (hereafter SDSS J2100). We obtained photometry and spectroscopy in both outburst and quiescent states, providing the first quiescent spectrum of this source. In both states, non-sinusoidal photometric modulations are apparent, suggestive of superhumps, placing SDSS J2100 in the SU UMa subclass of dwarf novae. However, the periods during outburst and quiescence differ significantly, being 2.099 plus or minus 0.002 hr and 1.96 plus or minus 0.02 hr respectively. Our phase-resolved spectroscopy during outburst yielded an estimate of about 2 hr for the orbital period, consistent with the photometry. The presence of the shorter period modulation at quiescence is unusual, but not unique. Another atypical feature is the relative weakness of the Balmer emission lines in quiescence. Overall, we find a close similarity between SDSS J2100 and the well-studied superhump cataclysmic Variable V503 Cygni. By analogy, we suggest that the quiescent modulation is due to a tilted accretion disk -- producing negative superhumps -- and the modulation in outburst is due to positive superhumps from the precession of an elliptical disk.Comment: 6 pages, 5 eps figures, accepted by PASP Dec. 16th, 200

    Transport properties of the heavy fermion superconductor PrOs4_{4}Sb12_{12}

    Full text link
    We have measured the electrical resistivity, thermoelectric power, Hall coefficient, and magnetoresistance (MR) on single crystals of PrOs4_{4}Sb12_{12}, LaOs4_{4}Sb12_{12} and NdOs4_{4}Sb12_{12}. All the transport properties in PrOs4_{4}Sb12_{12} are similar to those in LaOs4_{4}Sb12_{12} and NdOs4_{4}Sb12_{12} at high temperatures, indicating the localized character of 4ff-electrons. The transverse MR both in LaOs4_{4}Sb12_{12} and PrOs4_{4}Sb12_{12} tends to saturate for wide field directions, indicating these compounds to be uncompensated metals with no open orbit. We have determined the phase diagram of the field induced ordered phase by the MR measurement for all the principle field directions, which indicates an unambiguous evidence for the Γ1\Gamma_{\rm 1} singlet crystalline electric field ground state.Comment: 7 pages, 10 figures, to appear in Physical Review
    corecore