20 research outputs found
Investigation of a monoclonal antibody against enterotoxigenic Escherichia coli, expressed as secretory IgA1 and IgA2 in plants.
Passive immunization with antibodies is a promising approach against enterotoxigenic Escherichia coli diarrhea, a prevalent disease in LMICs. The objective of this study was to investigate expression of a monoclonal anti-ETEC CfaE secretory IgA antibody in N. benthamiana plants, with a view to facilitating access to ETEC passive immunotherapy. SIgA1 and SIgA2 forms of mAb 68-81 were produced by co-expressing the light and engineered heavy chains with J chain and secretory component in N. benthamiana. Antibody expression and assembly were compared with CHO-derived antibodies by SDS-PAGE, western blotting, size-exclusion chromatography and LC-MS peptide mapping. N-linked glycosylation was assessed by rapid fluorescence/mass spectrometry and LC-ESI-MS. Susceptibility to gastric digestion was assessed in an in vitro model. Antibody function was compared for antigen binding, a Caco-2 cell-based ETEC adhesion assay, an ETEC hemagglutination inhibition assay and a murine in vivo challenge study. SIgA1 assembly appeared superior to SIgA2 in plants. Both sub-classes exhibited resistance to degradation by simulated gastric fluid, comparable to CHO-produced 68-61 SIgA1. The plant expressed SIgAs had more homogeneous N-glycosylation than CHO-derived SIgAs, but no alteration of in vitro functional activity was observed, including antibodies expressed in a plant line engineered for mammalian-like N glycosylation. The plant-derived SIgA2 mAb demonstrated protection against diarrhea in a murine infection model. Although antibody yield and purification need to be optimized, anti-ETEC SIgA antibodies produced in a low-cost plant platform are functionally equivalent to CHO antibodies, and provide promise for passive immunotherapy in LMICs
TeagerâKaiser energy operator signal conditioning improves EMG onset detection
Accurate identification of the onset of muscle activity is an important element in the biomechanical analysis of human movement. The purpose of this study was to determine if inclusion of the TeagerâKaiser energy operator (TKEO) in signal conditioning would increase the accuracy of popular electromyography (EMG) onset detection methods. Three methods, visual determination, threshold-based method, and approximated generalized likelihood ratio were used to estimate the onset of EMG burst with and without TKEO conditioning. Reference signals, with known onset times, were constructed from EMG signals collected during isometric contraction of the vastus lateralis (n = 17). Additionally, vastus lateralis EMG signals (n = 255) recorded during gait were used to evaluate a clinical application of the TKEO conditioning. Inclusion of TKEO in signal conditioning significantly reduced mean detection error of all three methods compared with signal conditioning without TKEO, using artificially generated reference data (13 vs. 98 ms, p < 0.001) and also compared with experimental data collected during gait (55 vs. 124 ms, p < 0.001). In conclusion, addition of TKEO as a step in conditioning surface EMG signals increases the detection accuracy of EMG burst boundaries
Effect of Formulation Variables on the Stability of a Live, Rotavirus (RV3-BB) Vaccine Candidate using in vitro Gastric Digestion Models to Mimic Oral Delivery
In this work, two different in vitro gastric digestion models were used to evaluate the stability of a live attenuated rotavirus vaccine candidate (RV3-BB) under conditions designed to mimic oral delivery in infants. First, a forced-degradation model was established at low pH to assess the buffering capacity of formulation excipients and to screen for RV3-BB stabilizers. Second, a sequential-addition model was implemented to examine RV3-BB stability under conditions more representative of oral administration to infants. RV3-BB rapidly inactivated at < pH 5.0 (37 °C, 1 h) as measured by an infectivity RT-qPCR assay. Pre-neutralization with varying volumes of infant formula (EnfamilŸ) or antacid (MylantaŸ) conferred partial to full protection of RV3-BB. Excipients with sufficient buffering capacity to minimize acidic pH inactivation of RV3-BB were identified (e.g., succinate, acetate, adipate), however, they concomitantly destabilized RV3-BB in accelerated storage stability studies. Both effects were concentration dependent, thus excipient optimization was required to design candidate RV3-BB formulations which minimize acid-induced viral inactivation during oral delivery while not destabilizing the vaccine during long-term 2-8 °C storage. Finally, a statistical Design -of-Experiments (DOE) study examining RV3-BB stability in the in vitro sequential-addition model identified key formulation parameters likely affecting RV3-BB stability during in vivo oral delivery