1,973 research outputs found

    AL 3 (BH 261): a new globular cluster in the Galaxy

    Get PDF
    AL~3 (BH 261), previously classified as a faint open cluster candidate, is shown to be a new globular cluster in the Milky Way, by means of B, V and I Color-Magnitude Diagrams. The main feature of AL~3 is a prominent blue extended Horizontal Branch. Its Color-Magnitude Diagrams match those of the intermediate metallicity cluster M~5. The cluster is projected in a rich bulge field, also contaminated by the disk main sequence. The globular cluster is located in the Galactic bulge at a distance from the Sun d⊙_{\odot} = 6.0±\pm0.5 kpc. The reddening is E(B-V)=0.36±\pm0.03 and the metallicity is estimated to be [Fe/H] ≈\approx -1.3±\pm0.25. AL~3 is probably one of the least massive globular clusters of the Galaxy.Comment: 6 figures. Astrophysical Journal Letters, in pres

    El Roque de Los Muchachos Site Characteristics. III. Analysis of Atmospheric Dust and Aerosol Extinction

    Full text link
    Canary Islands are normally interested by dominant North-East winds that, in some meteorological conditions, can transport sand at high altitude from the Sahara desert. The dust may affect the efficiency of the telescopes and decreases the transparency of the sky. In order to maximize the scientific return of the telescopes located at the ORM, we present an analysis of the atmospheric dust content and its effects on astronomical observations. B, V and I dust aerosol astronomical extinction are derived. Using a 5 years series database of data taken from the four channel TNG dust monitor, we compute a mean hourly and daily values of the dust content. We have detected particles having size 0.3, 0.5, 1.0 and 5.0 um. Using a power law we have derived the content of 10.0 um particles. We found a typical local dust concentration ranging from 3x10^6 particles per cubic meter at 0.3 um, to 10^3 at 5.0 um and 10 at 10.0 um, increasing up to 3 order of magnitudes during the dust storms, with a relative higher increase of 1.0, 5.0 and 10.0 um particles. The number of local dust storm events is the same in winter- and summertime, but, the average background and storm-related increases in the dust concentration in summer are significantly higher than in winter. In a uniform approximation, during the dust storms, an average height of the dust layer of 2.5 km above the telescope is inferred. During the sand storms La Palma Island is affected by an almost uniform layer extending up to 5 km above the sea level, down, at least the height of the telescope. The visible extinction is dominated by particles at 1.0, 5.0 and 10.0 um. In agreement with the results from Carlsberg Automatic Meridian Circle (CAMC) we find a typical extinction during dust storms of about 0.2 mag/airmass.Comment: Accepted for publication in A&A. 9 pages, 11 figures. This work is the continuation of a series of papers concerning a detailed study of the Astroclimatology at ORM. The two previous papers (both Lombardi et al.) have reference PASP.2006.118.1198-1204 and PASP.2007.119.292-30

    HST NICMOS Photometry of the reddened bulge globular clusters NGC 6528, Terzan 5, Liller 1, UKS 1 and Terzan 4

    Get PDF
    We present results from NICMOS Hubble Space Telescope observations of the reddened bulge globular clusters NGC 6528, Terzan 5, Liller 1, UKS 1 and Terzan 4, obtained through the filters F110W and F160W (nearly equivalent to J and H). For the first time the turnoff region of Liller 1 and the main sequence of Terzan 5 and Terzan 4 are reached, as well as the horizontal branch of UKS 1. The magnitude difference between the turnoff and the red horizontal branch Δm110=m110HB−m110TO\Delta m_{110}=m_{110}^{HB}- m_{110}^{TO} is used as an age indicator. From comparisons with new isochrones in the NICMOS photometric system, we conclude that the two metal-rich clusters NGC 6528 and Terzan 5 are coeval within uncertainties (∼20\sim 20%) with 47 Tucanae. Liller 1 and UKS 1 are confirmed as metal-rich globular clusters. Terzan 4 is confirmed as an interesting case of a metal-poor cluster in the bulge with a blue horizontal branch.Comment: 7 pages, 6 figures, accepted for publication in A&

    Temperature dependence of the optical spectral weight in the cuprates: Role of electron correlations

    Full text link
    We compare calculations based on the Dynamical Mean-Field Theory of the Hubbard model with the infrared spectral weight W(Ω,T)W(\Omega,T) of La2−x_{2-x}Srx_xCuO4_4 and other cuprates. Without using fitting parameters we show that most of the anomalies found in W(Ω,T)W(\Omega,T) with respect to normal metals, including the existence of two different energy scales for the doping- and the TT-dependence of W(Ω,T)W(\Omega,T), can be ascribed to strong correlation effects.Comment: 4 pages, 3 figures. Minor corrections, corrected some typos and added reference

    The Optical Gravitational Lensing Experiment. Is Interstellar Extinction Toward the Galactic Center Anomalous?

    Full text link
    Photometry of the Galactic bulge, collected during the OGLE-II microlensing search, indicates high and non-uniform interstellar extinction toward the observed fields. We use the mean I-band magnitude and V-I color of red clump stars as a tracer of interstellar extinction toward four small regions of the Galactic bulge with highly variable reddening. Similar test is performed for the most reddened region observed in the LMC. We find that the slope of the location of red clump stars in the color-magnitude diagrams (CMDs) in the Galactic bulge is significantly smaller than the slope of the reddening line following the standard extinction law (R_V=3.1) for approximations of the extinction curve by both Cardelli, Clayton and Mathis (1989, CCM89) and Fitzpatrick (1999, F99). The differences are much larger for the CCM89 approximation which, on the other hand, indicates the same slopes for the control field in the LMC, contrary to the F99 approximation. We discuss possible systematic effects that could cause the observed discrepancy. Anomalous extinction toward the Galactic bulge seems to be the most natural explanation. Our data indicate that, generally, the ratio of the total to selective absorption, R_VI, is much smaller toward the Galactic bulge than the value corresponding to the standard extinction curve (R_V=3.1). However, R_VI varies from one line-of-sight to another. Our results explain why the red clump and RR Lyr stars in the Baade's window dereddened with standard value of R_VI are redder compared to those of the local population.Comment: 16 pages. Accepted for publication in ApJ. Major changes include: comparison of the OGLE-II photometry with other data, additional comparison of the observed reddening line with that resulting from approximation of the standard extinction curve by Fitzpatrick (1999

    The X-ray Luminosities of HH Objects

    Full text link
    The recent detection of X-ray emission from HH 2 and HH 154 with the Chandra and XMM-Newton satellites (respectively) have opened up an interesting, new observational possibility in the field of Herbig-Haro objects. In order to be able to plan further X-ray observations of other HH objects, it is now of interest to be able to estimate their X-ray luminosities in order to choose which objects to observe. This paper describes a simple, analytic model for predicting the X-ray luminosity of a bow shock from the parameters of the flow (i.e., the size of the bow shock, its velocity, and the pre-shock density). The accuracy of the analytic model is analyzed through a comparison with the predictions obtained from axisymmetric, gasdynamic simulations of the leading working surface of an HH jet. We find that our analytic model reproduces the observed X-ray luminosities of HH 2 and HH 154, and we propose that HH~80/81 is a good candidate for future observations with Chandra.Comment: 10 pages (8 text, 2 figures

    Boosting infrared energy transfer in 3D nanoporous gold antennas

    Get PDF
    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light–matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light–matter coupling at the vibrational absorption frequency of silica at 1240 cm−1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical–chemical reactions

    HST-NICMOS Observations of M31's Metal Rich Globular Clusters and Their Surrounding Fields: I. Techniques

    Get PDF
    We have obtained HST-NICMOS observations of five of M31's most metal rich globular clusters. These data allow photometry of individual stars in the clusters and their surrounding fields. However, to achieve our goals -- obtain accurate luminosity functions to compare with their Galactic counterparts, determine metallicities from the slope of the giant branch, identify long period variables, and estimate ages from the AGB tip luminosity, we must be able to disentangle the true properties of the population from the observational effects associated with measurements made in very crowded fields. In this paper we present a careful analysis of photometry in crowded regions, and show how image blending affects the results and interpretation of such data. Although this analysis is specifically for our NICMOS observations in M31, the techniques we develop can be applied to any imaging data taken in crowded fields; we show how the effects of image blending will even limit NGST. We use three different techniques to analyze the effects of crowding on our data, including the insertion of artificial stars (traditional completeness tests) and the creation of completely artificial clusters. They are used to derive threshold- and critical-blending radii for each cluster, which determine how close to the cluster center reliable photometry can be achieved. The simulations also allow us to quantify and correct for the effects of blending on the slope and width of the RGB at different surface brightness levels.Comment: AAS LaTeX v5.0, 18 pages. Submitted to the A
    • …
    corecore